NEXT GENERATION IMMUNOHISTOCHEMISTRY FOR SOFT TISSUE TUMORS: FROM DIFFERENTIATION TO MOLECULAR GENETICS

Jason L Hornick, MD, PhD

Director of Surgical Pathology and Immunohistochemistry Brigham and Women's Hospital Professor of Pathology Harvard Medical School Boston, MA, USA

Immunohistochemistry

20th Century

21st Century

DIFFERENTIATION (LINEAGE) MOLECULAR GENETICS

Conventional Immunohistochemistry

Line of differentiation	IHC markers
Myofibroblastic	Smooth muscle actin
Smooth muscle	Smooth muscle actin, desmin
Skeletal muscle	Desmin, MyoD1, MYOG
Vascular	CD31, CD34, ERG
Nerve sheath (Schwann cell)	S100 protein, SOX10

21st Century Immunohistochemistry

- Protein correlates of molecular genetic alterations (amplifications, deletions, mutations)
- Protein products of gene fusions
- Protein markers identified by gene expression profiling

21 st	Centu	ry IHC	Markers	not a
	Soft T	'issue '	Tumors	

ALK	H3G34W	RB1
β-catenin	H3K27me3	ROS1
BCOR	H3K36M	SDHB
CAMTA1	MDM2	SMARCA4
CCNB3	MUC4	SMARCB1
CDK4	MYC	SS18::SSX
DDIT3	NKX2-2	TFE3
ETV4	PAX3	TLE1
FOSB	PDGFRA	pan-TRK

Protein Correlates of Molecular Genetic		
β-catenin	MYC	
CDK4	PDGFRA	
H3G34W	RB1	
H3K27me3	SDHB	
H3K36M	SMARCA4 (BRG1)	
MDM2	SMARCB1 (INI1)	

SMARCB1 (INI1, SNF5, BAF47)

- Member of SWI/SNF multi-subunit chromatin remodeling complex
- Mobilizes nucleosomes and exposes DNA to transcription factors
- Ubiquitously expressed in normal cells
- Tumor suppressor gene

SMARCB1 in Malignant Rhabdoid Tumor

- Biallelic inactivation (mutation/deletion) in 98% of malignant rhabdoid tumors of infancy (renal, soft tissue, atypical teratoid/ rhabdoid tumor of CNS)
- Loss of SMARCB1/INI1 protein expression by IHC useful to confirm diagnosis of MRT

Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer

Isabella Versteege*, Nicolas Sévenet*, Julian Lange*, Marie-Françoise Rousseau-Merck*, Peter Ambros†, Rupert Handgretinger‡, Alain Aurias* & Olivier Delattre* NATURE VOL 394 9 JULY 1998

SMARCB1 and **Epithelioid Sarcoma**

- Most tumors show monoallelic or biallelic deletion of SMARCB1 locus, along with expression of specific miRNAs (miR765)
- IHC: SMARCB1/INI1 expression lost in ~95% of epithelioid sarcomas
- Helpful in differential diagnosis (especially CD34-negative cases)
- Metastatic carcinomas and epithelioid vascular tumors (angiosarcoma, EHE) retain SMARCB1 expression

TABLE 1. Summary of INI1 Immunohistochemistry		
Tumor	Total Cases	Absence of INI1 (%)
Malignant rhabdoid tumor	10	10 (100)
Epithelioid sarcoma (total)	136	127 (93)
Conventional ("distal") type	64	58 (91)
Proximal type	64	61 (95)
Hybrid type	8	8 (100)
Epithelioid angiosarcoma	20	0 (0)
Epithelioid hemangioendothelioma	10	0 (0)
Epithelioid MPNST	24	12 (50)
Myoepithelial carcinoma of soft tissue	22	2 (9)
Histiocytic sarcoma	5	0 (0)
Anaplastic large cell lymphoma	7	0 (0)
Diffuse large B-cell lymphoma	10	0 (0)
Epithelioid mesothelioma	20	0 (0)
Metastatic melanoma	20	0 (0)
Metastatic carcinoma (total)	54	0 (0)
Nonsmall cell lung	22	0 (0)
Breast	6	0 (0)
Colorectum	5	0 (0)
Stomach	6	0 (0)
Kidney	5	0 (0)
Prostate	5	0 (0)
Pancreas	5	0 (0)
Metastatic embryonal carcinoma (testis)	12	0 (0)

Hornick et al. Am J Surg Pathol 2009

Proximal-type Epithelioid Sarcoma

SMARCB1 Loss in Other Tumor Types

- Renal medullary carcinoma (100%)
- Poorly differentiated chordoma (100%)
- Epithelioid MPNST (70%)
- Soft tissue myoepithelial carcinoma (20%)
- Undifferentiated (rhabdoid) carcinomas (rare)

Malignant Peripheral Nerve Sheath Tumor

- Arise in patients with NF1, sporadically, or following radiation therapy
- Challenging diagnosis
- Diagnostic criteria:
 - 1. Origin from a nerve or a neurofibroma
 - 2. Spindle cell sarcoma in a patient with NF1
 - 3. Evidence of Schwann cell differentiation by IHC or EM » S100 protein and SOX10 only 30-50% sensitivity
- Diagnosis in sporadic setting relies on distinctive histology and exclusion of mimics

Polycomb Repressive Complexes

Epigenetic modification of chromatin:

• PRC2 recruits to chromatin and trimethylates histone H3 at lysine 27 Physiologic regulation of cell fate and stem cell differentiation Deregulation \rightarrow cancer development

Modified from Sauvageau et al. Cell Stem Cell 2010

LETTER NATUR PRC2 loss amplifies Ras-driv confers sensitivity to BRD4- Thomas De Raedt ^{1,2,3} , Eline Beert ^{4*†} , Eric Pasmant ^{5,6*} , Armelle Luse Jason L. Hornick ¹⁰ , Victor Mautner ¹¹ , Hildegard Kehrer-Sawatzki ¹² , Meena Upadhyaya ¹⁵ , Eric Legius ^{4,16} & Karen Cichowski ^{1,2,3}	E ven transcription and -based therapies can ^{5,6} , Hilde Brems ⁴ , Nicolas Ortonne ^{5,6} , Kristian Helin ^{7,8,9} , Wade Clapp ¹³ , James Bradner ^{2,14} , Michel Vidaud ^{5,6} ,	Oct 2014
nature genetics PRC2 is recurrently inactivated loss in malignant peripheral ner William Lee ^{1,2,17} , Sewit Teckie ^{2,3,17} , Thomas Wiesner ^{3,17} , Leili Mingyan Lin ⁵ , Sinan Zhu ³ , Zhen Cao ³ , Yupu Liang ³ , Andrea S Kety H Huberman ¹² , Li-Xuan Qin ¹³ , Agnes Viale ¹² , Samuel Si	Nov 2014	
Yu Chen ^{3,9,10} , Cristina R Antonescu ⁴ & Ping Chi ^{3,9,10} BRIEF COMMUNICATIONS nature	Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors	
genetics	Ming Zhang ^{1,2} , Yuxuan Wang ^{1,2} , Sian Jones ³ , Mark Sausen ³ , Kevin McMahon ^{1,2} , Rajni Sharma ⁴ , Qing Wang ^{1,2} , Allan J Belzberg ⁵ , Kaisorn Chaichana ⁵ , Gary L Gallia ⁵ , Ziya L Gokaslan ⁵ , Greg J Riggins ⁵ , Jean-Paul Wolinksy ⁵ , Laura D Wood ⁴ , Elizabeth A Montgomery ⁴ , Ralph H Hruban ⁴ , Kenneth W Kinzler ^{1,2} , Nickolas Papadopoulos ^{1,2} , Bert Vogelstein ^{1,2} & Chetan Bettegowda ^{1,2,5}	Nov 2014

PRC2 and MPNST

- PRC2 alterations (SUZ12 or EED mutations) in 85-90% of MPNST
- Homozygous mutations result in loss of H3K27me3 (histone H3 lysine 27 trimethylation) in ~65% of MPNST
- Rate of H3K27me3 loss depends on grade
- IHC for H3K27me3 highly specific diagnostic marker

Schaefer et al. *Mod Pathol* 2016

Prieto-Granada et al. Am J Surg Pathol 2016

IHC for H3K27me3 in MPNST

MPNST grade (or type)	H3K27me3 loss
Low grade	30%
Intermediate grade	60%
High grade	85%
Epithelioid	0%
	Schaefer et al. M

Prieto-Granada et al. Am J Surg Pathol 2016

IHC for H3K27me3 in other spindle cell tumors

Tumor type	H3K27me3 loss
Cellular schwannoma	0%
Atypical neurofibroma	0%
Monophasic synovial sarcoma	0%
Leiomyosarcoma	0%
Myxofibrosarcoma	0%
Malignant solitary fibrous tumor	0%
Low-grade fibromyxoid sarcoma	0%
Spindle cell rhabdomyosarcoma	0%
Gastrointestinal stromal tumor	0%
Dedifferentiated liposarcoma	6%
Spindle cell melanoma	7%

Protein Products of Gene Fusions		
ALK	ROS1	
BCOR	SS18::SSX	
CAMTA1	STAT6	
CCNB3	TFE3	
DDIT3	Pan-TRK	
FOSB	WT1	

Synovial Sarcoma

- Relatively common soft tissue sarcoma: 8% overall
- Peak in young adults; predilection for extremities
- Aggressive: 5-yr and 10-yr survival 60% and 50%
- Harbors pathognomonic t(X;18)(p11;q11)
- Results in SS18::SSX1 >> SS18::SSX2 (rarely SS18::SSX4)
- Monophasic, biphasic, and poorly differentiated variants
- Considerable overlap with other tumor types
- Currently available IHC markers lack specificity
| | | n (%) | |
|-------------------------------------|----------------|----------------------|-------------------------------|
| Tumor Type | Total
Cases | SS18-SSX
Positive | SSX
C-terminus
Positive |
| SS | 100 | 95 (95) | 100 (100) |
| Monophasic SS | 41 | 39 (95) | 41 (100) |
| Biphasic SS | 18 | 18 (100) | 18 (100) |
| PD SS | 41 | 38 (93) | 41 (100) |
| Non-SS tumors | 300 | 0 (0) | 13 (4) |
| MPNST | 20 | 0 (0) | 2 (10) |
| SFT | 20 | 0 (0) | 0 (0) |
| Dedifferentiated liposarcoma | 20 | 0 (0) | 2 (10) |
| Leiomyosarcoma | 20 | 0 (0) | 0 (0) |
| Fibrosarcomatous variant of DFSP | 20 | 0 (0) | 0 (0) |
| Ewing sarcoma | 20 | 0 (0) | 0 (0) |
| CIC sarcoma | 20 | 0 (0) | 0 (0) |
| Spindle cell rhabdomyosarcoma | 20 | 0 (0) | 0 (0) |
| Alveolar rhabdomyosarcoma | 20 | 0 (0) | 1 (5) |
| Embryonal rhabdomyosarcoma | 20 | 0 (0) | 1 (5) |
| Mesenchymal chondrosarcoma | 20 | 0 (0) | 2(10) |
| Desmoplastic small round cell tumor | 20 | 0 (0) | 2 (10) |
| Clear cell sarcoma | 20 | 0 (0) | 0 (0) |
| Biphenotypic sinonasal sarcoma | 10 | 0 (0) | 1 (10) |
| BCOR-rearranged sarcoma | 10 | 0 (0) | 0 (0) |
| Sarcomatoid mesothelioma | 10 | 0 (0) | 2 (20) |
| Biphasic mesothelioma | 10 | 0 (0) | 0 (0) |

c. .

1 4 / . 1

CCV F

1 0

ORIGINAL ARTICLE Am | Surg Pathol • Volume 44, Number 7, July 2020 A Novel SS18-SSX Fusion-specific Antibody for the Diagnosis of Synovial Sarcoma Esther Baranov, MD,* Matthew J. McBride, PhD,† Andrew M. Bellizzi, MD,‡ Azra H. Ligon, PhD,* Christopher D.M. Fletcher, MD, FRCPath,* Cigall Kadoch, PhD,† and Jason L. Hornick, MD, PhD* E9X9V E5A2C ...Ty-Asp-Gin-Ile-Met-Pro.. N 2 1º **SS18** SSX ...Lys-Gin-Leu. (aa1-379) (aa111-178) Antibody Sensitivity Specificity 95% 100% **SS18::SSX** SSX (C-term) 100% 96%

IHC with SS18::SSX fusion-specific antibody

Tumor type	Total cases	SS18-SSX +
Synovial sarcoma	233	94%
Malignant peripheral nerve sheath tumor	128	0%
Solitary fibrous tumor	52	0%
Dedifferentiated liposarcoma	87	0%
Leiomyosarcoma	64	0%
Ewing sarcoma	35	0%
Mesothelioma (sarcomatoid)	24	0%
Sarcomatoid carcinoma	19	0%
	Baranov et al. A	m J Surg Pathol 2020
	Zaborowksi et al.	Histopathology 2020

Perret et al. Am J Surg Pathol 2021

Monophasic Synovial Sarcoma

Poorly Differentiated Synovial Sarcoma

- Distinctive sarcoma showing endothelial differentiation; less aggressive than angiosarcoma
- Epithelioid cells arranged in cords and nests
- Myxohyaline stroma typical
- Occasional cytoplasmic vacuoles
- Keratin expression common
- May be confused with metastatic carcinoma, especially lobular breast and signet-ring-cell gastric

0

The American Journal of Surgical Pathology 25(5): 684-687, 2001

Translocation t(1;3)(p36.3;q25) Is a Nonrandom Aberration in Epithelioid Hemangioendothelioma

Matthew R. Mendlick, B.A., Marilu Nelson, B.S., CLSp (CG), CLSp (MB), Diane Pickering, B.S., CLSp (CG), Sonny L. Johansson, M.D., Ph.D., Thomas A. Seemayer, M.D., James R. Neff, M.D., Gerardo Vergara, M.D., Howard Rosenthal, M.D., and Julia A. Bridge, M.D.

www.ScienceTranslationalMedicine.org 31 August 2011 Vol 3 Issue 98 98ra82

Identification of a Disease-Defining Gene Fusion in Epithelioid Hemangioendothelioma

Munir R. Tanas,¹ Andrea Sboner,² Andre M. Oliveira,³ Michele R. Erickson-Johnson,³ Jessica Hespelt,¹ Philip J. Hanwright,¹ John Flanagan,⁴ Yuling Luo,⁴ Kerry Fenwick,⁵ Rachael Natrajan,⁵ Costas Mitsopoulos,⁵ Marketa Zvelebil,⁵ Benjamin L. Hoch,⁶ Sharon W. Weiss,⁷ Maria Debiec-Rychter,⁸ Raf Sciot,⁹ Rob B. West,¹⁰ Alexander J. Lazar,¹¹ Alan Ashworth,⁵ Jorge S. Reis-Filho,⁵ Christopher J. Lord,⁵ Mark B. Gerstein,^{2,12} Mark A. Rubin,¹³ Brian P. Rubin¹*

GENES, CHROMOSOMES & CANCER 50:644-653 (2011)

A Novel WWTR1-CAMTA1 Gene Fusion Is a Consistent Abnormality in Epithelioid Hemangioendothelioma of Different Anatomic Sites

Costantino Errani,^{1,2†‡} Lei Zhang,^{1†} Yun Shao Sung,¹ Mihai Hajdu,¹ Samuel Singer,³ Robert G. Maki,⁴ John H. Healey,² and Cristina R. Antonescu^{1*}

IHC for CAMTA1

- Nuclear staining in most cases of EHE
- Negative in epithelioid hemangioma and epithelioid angiosarcoma
- Negative in other epithelioid mesenchymal tumors
- Negative in carcinomas
- Useful diagnostic marker for EHE

Shibuya et al. Histopathology 2015

Doyle et al. Am J Surg Pathol 2016

Tumor Type	Total Cases	CAMTA Positive (n [%])
EHE	59	51 (86)
Epithelioid hemangioma	20	0 (0)
Epithelioid angiomatous nodule	10	0 (0)
Epithelioid angiosarcoma	25	1 (4)
Composite hemangioendothelioma	5	0 (0)
Pseudomyogenic hemangioendothelioma	10	0 (0)
Epithelioid sarcoma	25	0 (0)
Sclerosing epithelioid fibrosarcoma	10	0 (0)
Myoepithelial neoplasms of soft tissue	10	0 (0)
PEComa	10	0 (0)
Alveolar soft part sarcoma	10	0 (0)
Ossifying fibromyxoid tumor	10	0 (0)
		Dovle et al. An

Diagnostic Markers Identified by Gene Expression Profiling		
DOG1 (ANO1)	NKX2-2	
ETV4	SATB2	
MUC4	TLE1	

NKX2-2

- Homeobox transcription factor involved in neuronal development and glial/ neuroendocrine differentiation
- Gene expression profiling: NKX2-2 downstream target of EWSR1::FLI1 fusion
- NKX2-2 required for oncogenic transformation

Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma Richard Smith,^{1,6} Leah A. Owen,^{2,6} Deborah J. Trem,¹ Jenny S. Wong,³ Jennifer S. Whangbo,³ Todd R. Golub,^{3,4} and Stephen L. Lessnick^{1,2,5,*}

CANCER CELL 9, 405-416, MAY 2006

NKX2-2

- IHC: diffuse nuclear NKX2-2 sensitive marker for Ewing sarcoma (95%)
- Also positive in Ewing sarcoma with EWSR1::ERG
- Imperfect specificity: mesenchymal chondrosarcomas often positive (also olfactory neuroblastomas)

NKX2.2 is a Useful Immunohistochemical Marker for Ewing Sarcoma

Akihiko Yoshida, MD,*† Shigeki Sekine, MD, PhD,‡ Koji Tsuta, MD, PhD,* Masashi Fukayama, MD, PhD,† Koh Furuta, MD, PhD,* and Hitoshi Tsuda, MD, PhD*

Am J Surg Pathol • Volume 36, Number 7, July 2012

Table 1 Summary of immunohistochemical staining for NKX2-2		
Tumor type	Total cases	NKX2-2 positive (%)
Ewing sarcoma	40	37 (93)
Non-Ewing small round blue cell tumors		
CIC-DUX4 sarcoma	20	1 (5)
BCOR-CCNB3 sarcoma	5	0 (0)
Unclassified round cell sarcoma	9	2 (22)
Synovial sarcoma, poorly differentiated	10	1 (10)
Lymphoblastic lymphoma	10	0 (0)
Alveolar rhabdomyosarcoma	10	0 (0)
Embryonal rhabdomyosarcoma	10	0 (0)
NUT midline carcinoma	5	0 (0)
Wilms tumor	10	0 (0)
Merkel cell carcinoma	10	0 (0)
Melanoma	20	0 (0)
Small cell carcinoma	10	3 (30)
Neuroblastoma	10	1 (10)
Olfactory neuroblastoma	10	8 (80)
Mesenchymal chondrosarcoma	12	9 (75)

Hung et al. Mod Pathol 2016

Mesenchymal Chondrosarcoma

CIC-rearranged sarcoma

- Most common "Ewing-like" ("undifferentiated") round cell sarcoma that lacks EWSR1 gene fusions (more than 70%)
- Majority with CIC::DUX4 fusions (also known as CIC::DUX4 sarcoma)
- Wide age range; peak in young adults
- Deep soft tissue of extremities and trunk most frequent
- Bone and visceral sites rare
- Much more aggressive clinical course and worse survival than Ewing sarcoma; currently treated similarly

CIC-rearranged Sarcoma

CIC-rearranged Sarcoma

CIC-rearranged Sarcoma

GENES, CHROMOSOMES & CANCER 53:622-633 (2014)

Distinct Transcriptional Signature and Immunoprofile of CIC-DUX4 Fusion–Positive Round Cell Tumors Compared to EWSR1-Rearranged Ewing Sarcomas: Further Evidence Toward Distinct Pathologic Entities

Katja Specht,¹ Yun-Shao Sung,² Lei Zhang,² Günther H. S. Richter,³ Christopher D. Fletcher,^{4*} and Cristina R. Antonescu^{2*}

MODERN PATHOLOGY (2015) 28, 57-68 CIC-DUX sarcomas demonstrate frequent MYC amplification and ETS-family transcription factor expression

Steven Christopher Smith^{1,2,6,7}, Darya Buehler^{3,6}, Eun-Young Karen Choi¹, Jonathan B McHugh¹, Brian P Rubin⁴, Steven D Billings⁴, Bonnie Balzer², Dafydd G Thomas¹, David R Lucas¹, John R Goldblum⁴ and Rajiv M Patel^{1,5}

Modern Pathology (2016) 29, 1324–1334 Evaluation of ETV4 and WT1 expression in *CIC*-rearranged sarcomas and histologic mimics

Yin P Hung, Christopher DM Fletcher and Jason L Hornick

MODERN PATHOLOGY (2016) 29, 1523-1531

ETV4 is a useful marker for the diagnosis of *CIC*-rearranged undifferentiated round-cell sarcomas: a study of 127 cases including mimicking lesions

Sophie Le Guellec^{1,2}, Valérie Velasco³, Gaëlle Pérot^{2,3}, Sarah Watson⁴, Franck Tirode⁴ and Jean-Michel Coindre^{2,3,5}

CIC-rearranged Sarcoma: IHC

Marker	Positive	Comments
CD99	85%	Usually patchy; 20% diffuse
WT1	90%	Nuclear +/- cytoplasmic
ETV4	95%	Nuclear
Keratins	15%	Focal

Hung et al. *Mod Pathol* 2016

Le Guellec et al. *Mod Pathol* 2016

Antonescu et al. Am J Surg Pathol 2017

HJL2 Hornick, Jason L.,M.D.,Ph.D., 2/3/2019

ETV1 Histopathology 2017, 71, 461–469. CIC break-apart fluorescence in-situ hybridization misses a subset of CIC-DUX4 sarcomas: a clinicopathological and molecular study Akihiko Yoshida,^{1,2,*} Yasuhito Arai,^{3,*} Eisuke Kobayashi,^{2,4} Kan Yonemori,^{2,5} Koichi Ogura,³ Natsuko Hama,³ Wakako Mukai,³ Toru Motoi,⁶ Akira Kawai,^{2,4} Tatsuhiro Shibata³ & Nobuyoshi Hiraoka¹ Genes Chromosomes Cancer. 2017;56:501–510 ETV transcriptional upregulation is more reliable than RNA sequencing algorithms and FISH in diagnosing round cell sarcomas with CIC gene rearrangements

Yu-Chien Kao ^{1,2}	run-Shao Sungi Chi	In-Liang Chen ¹ Lei	Zhang ¹
Brendan C Dickson ³	David Swanson ³	Sumathi Vaiyapuri ⁴	Farida Latif ⁵
Abdullah Alholle ⁶	Shih-Chiang Huang ⁷	Jason L. Hornick ⁸	Cristina R Antonescu ¹

C/C-rearranged sarcoma: Genetics

- CIC::DUX4 in most cases (95%)
- CIC::FOXO4, CIC::LEUTX, CIC::NUTM1, CIC::NUTM2A in rare cases
- FISH negative in 15% (cryptic rearrangement)
- Next-generation sequencing can also miss gene fusions

MUC4

- High-molecular-weight transmembrane glycoprotein
- Expressed in colonic epithelium, among others
- Gene expression profiling: MUC4 excellent discriminator of low-grade fibromyxoid sarcoma from histologic mimics

FUS-CREB3L2/L1–Positive Sarcomas Show a Specific Gene Expression Profile with Upregulation of CD24 and FOXL1

Emely Möller¹, Jason L. Hornick⁴, Linda Magnusson¹, Srinivas Veerla³, Henryk A. Domanski², and Fredrik Mertens¹

Clin Cancer Res; 17(9) May 1, 2011

MUC4 in Low-Grade Fibromyxoid Sarcoma

- IHC for MUC4 helpful in differential diagnosis:
 - Positive in >99% of LGFMS
 - Negative in soft tissue perineurioma, MPNST, myxofibrosarcoma, solitary fibrous tumor, desmoid fibromatosis, intramuscular/cellular myxoma

MUC4 Is a Highly Sensitive and Specific Marker for Low-grade Fibromyxoid Sarcoma

Leona A. Doyle, MD,* Emely Möller, PhD,† Paola Dal Cin, PhD,* Christopher D.M. Fletcher, MD, FRCPath,* Fredrik Mertens, MD, PhD,† and Jason L. Hornick, MD, PhD*

Am J Surg Pathol • Volume 35, Number 5, May 2011

Low-grade Fibromyxoid Sarcoma

Low-grade Fibromyxoid Sarcoma

Practice Points

- Rapid evolution in understanding of genetics of soft tissue tumors
- Molecular genetic findings lead to highly specific IHC markers
- Gene expression profiling provides novel markers to discriminate among classes of histologically similar tumors
- Should lead to more reproducible and accurate diagnosis of rare tumor types

THANK YOU!

