HEERSINK SCHOOL OF MEDICINE

Precision Pathology

Challenges and Opportunities

George J. Netto, M.D.

Professor and Robert and Ruth Anderson Endowed Chair of Pathology HEERSINK SCHOOL OF MEDICINE University of Alabama at Birmingham (UAB)

HEERSINK SCHOOL OF MEDICINE

Precision Pathology

A Journey of Transformation and Innovative Disruption

George J. Netto, M.D.

Professor and Robert and Ruth Anderson Endowed Chair of Pathology HEERSINK SCHOOL OF MEDICINE University of Alabama at Birmingham (UAB)

Disclosures

I have the following financial relationships to disclose:

TERT Promoter Mutations in Urothelial Neoplasia Patents: (US201660208340A1) (PCT/US2014/051808)

UroSEEK; CancerSEEK; PapSEEK

- Methods and Materials for Assessing and Treating Cancer Patents: (US16/250,703) (PCT/US2018/045669)
- Financial Interest in "Thrive Early Detection Corp" and "Exact Sciences Inc"

Genentech Advisory Pathology Board

Why bullish on the future of our field?

- Optimist by nature, but fully believe we are heading for a bright future ...
- Recent technological and interdisciplinary advances (Precision Medicine) present unprecedented opportunities for Pathology and Lab Med
- Disruptive changes in healthcare environment (technological, financial and operational) pose significant challenges but open new doors for our specialty

Implications of the Human Genome Project for Medical Science

Francis Collins and Victor McKusick, JAMA February 2001

Disruptive Advances in Path & LM as Opportunities

https://health.usf.edu https://www.datanami.com https://theconversation.com

Advances in Genomic Technologies & Bioinformatics

Genomic Technology & Bioinformatics

Pathology and Lab Med Opportunities

- Familial/Genetic risk
- Targeted Rx
- Immunotherapy/Immuno-genomics
- Liquid Biopsy
- Single Cell-Spatial Omics
- Cell Rx

Omics: Coming Together...

- Genomic advances paved the way to Precision Medicine
- Multiparametric Analyses (e.g. TCGA studies)
 - DNA
 - RNA
 - Protein
 - Epigenetics
- Robust Molecular Classifications
 - Functional role of molecular alterations across tumor types
 - Druggable targets

Toward Personalized Oncology Care

Hanahan and Weinberg Cell 2011

Hanahan CANCER DISCOVERY 2022

Molecular Diagnostic Pathology in NSCLC

A model for future cancer management of solid tumors

EGFR Mutation Predicts Response to TKI (Gefitinib)

Lynch et al NEJM 2004; 350:2129-39

•8/9 NSCLC with EFGR mutation Vs 0/7 EGFR wild type tumors had evidence of Iressa Rx response •8% EGFR mutation rate in 25 tested NSCLC pts

Genetic Alterations in Lung Adenocarcinoma

AACR / GENIE / Lung Cancer Mutation Consortium

Chen et al. Journal of Hematology & Oncology 2020

Macks PH et al . Cancer 2020

Mechanisms of Acquired Resistance to NSCLC TKI

Mechanisms of acquired resistance to 1st generation TKI (gefitinib/erlotinib)

Mechanisms of acquired resistance to **3rd generation TKI** (osimertinib)

Nagano t et al. Cells (2018)

Liquid Biopsy Minimally Invasive Tumor Monitoring

- Tumor genomic landscape is heterogeneous within primary and metastatic sites
- Longitudinal surveillance of clonal evolution (eg. selective pressure of targeted Rx) is essential for precision medicine
- Blood contains tumor-derived materials:
 - Circulating cell-free tumor DNA (ctDNA)
 - Circulating tumor cells (CTC)
- Advantages
 - Lower Cost \$\$
 - Avoid FFPE cross linking artifacts
 - Repeatable
 - Clones with metastatic potential (CTC)

Siravegna G. et al. Nature Reviews clinical oncology 2017

Liquid Biopsy Commercial Landscape

UroSEEK/CancerSEEK/PapSEEK

CANCER

Detection and localization of surgically resectable cancers with a multi-analyte blood test

Joshua D. Cohen,^{1,2,3,4,5} Lu Li,⁶ Yuxuan Wang,^{1,2,3,4} Christopher Thoburn,³ Bahman Afsari,⁷ Ludmila Danilova,⁷ Christopher Douville,^{1,2,3,4} Ammar A. Javed,⁸ Fay Wong,^{1,3,4} Austin Mattox,^{1,2,3,4} Ralph. H. Hruban,^{3,4,9} Christopher L. Wolfgang,⁸ Michael G. Goggins,^{3,4,9,10,11} Marco Dal Molin,⁴ Tian-Li Wang,^{3,9} Richard Roden,^{3,9} Alison P. Klein,^{3,4,12} Janine Ptak,^{1,2,3,4} Lisa Dobbyn,^{1,3,4} Joy Schaefer,^{1,3,4} Natalie Silliman,^{1,2,3,4} Maria Popoli,^{1,3,4} Joshua T. Vogelstein,¹³ James D. Browne,¹⁴ Robert E. Schoen,^{15,16} Randall E. Brand,¹⁵ Jeanne Tie,^{17,18,19,20} Peter Gibbs,^{17,18,19,20} Hui-Li Wong,¹⁷ Aaron S. Mansfield,²¹ Jin Jen,²² Samir M. Hanash,²³ Massimo Falconi,²⁴ Peter J. Allen,²⁵ Shibin Zhou,^{1,3,4} Chetan Bettegowda,^{1,3,4} Luis A. Diaz Jr.,^{1,3,4‡} Cristian Tomasetti,^{3,6,7}[†] Kenneth W. Kinzler,^{1,3,4†}

Cohen, J.D., et al. Science, 2018

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers

Yuxuan Wang,¹ Lu Li,² Christopher Douville,¹ Joshua D. Cohen,^{1,3} Ting-Tai Yen,⁴ Isaac Kinde,⁵ Karin Sundfelt,⁶ Susanne K. Kjær,^{7,8} Ralph H. Hruban,⁹ le-Ming Shih,⁹ Tian-Li Wang,⁹ Robert J. Kurman,⁹ Simeon Springer,¹ Janine Ptak,¹ Maria Popoli,¹ Joy Schaefer,¹ Natalie Silliman,¹ Lisa Dobbyn,¹ Edward J. Tanner,⁴ Ana Angarita,⁴ Maria Lycke,⁶ Kirsten Jochumsen,¹⁰ Bahman Afsari,² Ludmila Danilova,² Douglas A. Levine,¹¹ Kris Jardon,¹² Xing Zeng,¹² Jocelyne Arseneau,¹² Lili Fu,¹² Luis A. Diaz Jr.,¹ Rachel Karchin,¹³ Cristian Tomasetti,²* Kenneth W. Kinzler,^{1*} Bert Vogelstein,^{1,14*} Amanda N. Fader,^{4*} Lucy Gilbert,^{12*} Nickolas Papadopoulos^{1*}

Wang Y., et al. Sci Trans Med, 2018

Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy

Simeon U Springer^{1,2†}, Chung-Hsin Chen^{3†}, Maria Del Carmen Rodriguez Pena^{4,5†}, Lu Li⁶, Christopher Douville⁷, Yuxuan Wang^{1,2}, Joshua David Cohen^{1,2}, Diana Taheri^{4,8}, Natalie Silliman^{1,2}, Joy Schaefer^{1,2}, Janine Ptak^{1,2}, Lisa Dobbyn^{1,2}, Maria Papoli^{1,2}, Isaac Kinde^{1,2}, Bahman Afsari^{9,10}, Aline C Tregnago⁴, Stephania M Bezerra¹¹, Christopher VandenBussche⁴, Kazutoshi Fujita¹², Dilek Ertoy¹³, Isabela W Cunha¹¹, Lijia Yu⁵, Trinity J Bivalacqua¹⁴, Arthur P Grollman^{15,16}, Luis A Diaz¹⁷, Rachel Karchin^{7,9}, Ludmila Danilova^{10,13}, Chao-Yuan Huang³, Chia-Tung Shun¹⁸, Robert J Turesky^{19,20}, Byeong Hwa Yun^{19,20}, Thomas A Rosenquist¹⁵, Yeong-Shiau Pu³, Ralph H Hruban⁴, Cristian Tomasetti^{6,10}, Nickolas Papadopoulos^{1,2}, Ken W Kinzler^{1,2}, Bert Vogelstein^{1,2*}, Kathleen G Dickman^{15,16*}, George J Netto^{4,5*}

Springer et al. eLife 2018

PANIC !!!

THE END OF MICROSCOPY !!!

NOT EXACTLY, YET !!

Company	Liquid biopsy	Use	Status in US	Company notes
Guardant Health	Guardant360	Helps assign targeted therapy	Approved Aug 7, 2020, price approx \$6,800	\$550m VC funding; floated in 2018
Foundation Medicine (Roche)	FoundationOne Liquid CDx	Helps assign targeted therapy	Approved Aug 27, 2020, price \$5,800	\$115m VC funding; bought by Roche for \$2.5bn in 2015
Grail	Galleri	Screening for early detection and identification of tumour origin	Launched as LDT Jun 4, 2021, price \$949	\$2.1bn VC funding; bought by Illumina for \$8bn in
				2020
Thrive Earlier Detection (Exact Sciences)	CancerSeek	Early detection	FDA breakthrough device status	\$367m VC funding; bought by Exact Sciences in 2020 for \$1.7bn
Natera	Signatera	Postsurgical, detects disease recurrence	FDA breakthrough device status	\$152m in VC funding; floated in 2015
Archer DX (Invitae)	Stratafide	Helps assign targeted therapy	FDA breakthrough device status	\$150m VC funding; bought by Invitae in 2020 for \$1.4bn

Check for updates

Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer

Check for updates

Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer

Rolfo C et al , J Thoracic Oncol October 2021

Genomic Technology & Bioinformatics

NEXT FRONTIERS

Single Cell Spatial "Omics"

Cell Rx: CAR-T, TCR

CellPress OPEN ACCESS

Article Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing

Ashley Maynard,^{1,15} Caroline E. McCoach,^{2,3,15} Julia K. Rotow,^{4,16} Lincoln Harris,^{1,16} Franziska Haderk,^{2,3,5,16} D. Lucas Kerr,^{2,16} Elizabeth A. Yu,² Erin L. Schenk,⁶ Weilun Tan,¹ Alexander Zee,^{1,7} Michelle Tan,¹ Philippe Gui,^{2,3} Tasha Lea,³ Wei Wu,² Anatoly Urisman,⁸ Kirk Jones,⁸ Rene Sit,¹ Pallav K. Kolli,⁹ Eric Seeley,² Yaron Gesthalter,² Daniel D. Le,¹ Kevin A. Yamauchi,¹ David M. Naeger,^{10,11} Sourav Bandyopadhyay,^{5,12} Khyati Shah,¹² Lauren Cech,² Nicholas J. Thomas,² Anshal Gupta,² Mayra Gonzalez,² Hien Do,² Lisa Tan,² Bianca Bacattos,² Rafael Gomez-Sjoberg,¹ Matthew Gubens,^{2,3} Thierry Jahan,^{2,3} Johannes R. Kratz,¹³ David Jablons,¹³ Norma Neff,¹ Robert C. Doebele,⁶ Jonathan Weissman,^{5,14} Collin M. Blakely,^{2,3,*} Spyros Darmanis,^{1,*} and Trever G. Bivona^{2,3,5,17,*}

Cell

Ashley Maynard et al. Cell 2020

٠

•

Ashley Maynard et al. Cell 2020

- Over **20,000** cancer and TME **cells** scRNA-seq profiles
- Cancer and TME exhibit marked Rx-induced plasticity (rich and dynamic ecosystem)
- New opportunities to improve clinical outcome

Cell Therapy

CAR-T

Carl H June & Michel Sadelain M. N Engl J Med. 2018

June et al., Science 2018

Cancer immunotherapy comes of age and looks for maturity

Amanda Finck¹, Saar I. Gill¹ & Carl H. June (₀ ^{1,2⊠}

Fink A et al., Nat. Comm. 2020

Nat. Rev. Drug Discov. 2018

Limitations and challenges of CAR-T cell Therapy

Michael C. Milone

Bruce L. Levine

Sterner and Sterner, Blood Cancer Journal 2021

Advances in Digital and Computational Pathology

Digital Pathology & Computational Pathology

Pathology and Lab Med Opportunities

- Precision AP diagnostics
- Operational workflow efficiencies
- Precision biomarkers assessment
- Multispectral and spatial resolution

Histopathology

Histopathology 2019, 74, 372–376.

Manuel Salto-Tellez^{1,2,3} Perry Maxwell^{1,2} Peter Hamilton⁴

Artificial intelligence—the third revolution in pathology

¹Precision Medicine Centre of Excellence, ²Centre for Cancer Research and Cell Biology, Queen's University Belfast, ³Tissue Pathology, Belfast Health and Social Care Trust, and ⁴Philips Digital Pathology, Belfast, UK

Clinical-grade computational pathology using weakly supervised deep learning on whole slide images

medicine

Gabriele Campanella^{1,2}, Matthew G. Hanna¹, Luke Geneslaw¹, Allen Miraflor¹, Vitor Werneck Krauss Silva¹, Klaus J. Busam¹, Edi Brogi¹, Victor E. Reuter¹, David S. Klimstra¹ and Thomas J. Fuchs^{1,2*}

44,732 WSI from 15,187

() Check for updates ARTICLE **OPEN** Direct identification of ALK and ROS1 fusions in non-small cell lung cancer from hematoxylin and eosin-stained slides using deep learning algorithms Chen Mayer (1⁴¹⁴), Efrat Ofek¹⁴, Danielle Even Fridrich¹, Yossef Molchanov¹, Rinat Yacobi¹, Inbal Gazy², Ido Hayun², Jonathan Zalach², Nurit Paz-Yaacov² and Iris Barshack^{1,3} Model Training Algorithm development **Fine-tuning** Wat E. Unsupervised Semi-supervised learning learning **FFPE WSIs** Initial weights for **FFPE WSIs** ALK/ROS1 162 NSCLC 21K pan-cancer fine-tuning process Classifier model training set sample set O Validation D Goy 2 FFPE WSIs 72 NSCLC ALK/ROS1 **Biomarker status** Comparison Classifier model validation set **AI Solution Routine Testing** X Standard test panel **Biomarker status**

Modern Pathology Sept 2022

European Journal of Cancer 2017

Evaluating Predictive Biomarkers for Immunotherapies

Courtesy of Dr. Janis Taube

JAMA Oncology | Original Investigation

Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade A Systematic Review and Meta-analysis

Steve Lu; Julie E. Stein, MD; David L. Rimm, MD, PhD; Daphne W. Wang, MS; J. Michael Bell; Douglas B. Johnson, MD; Jeffrey A. Sosman, MD; Kurt A. Schalper, MD, PhD; Robert A. Anders, MD, PhD; Hao Wang, PhD; Clifford Hoyt, MS; Drew M. Pardoll, MD, PhD; Ludmila Danilova, PhD; Janis M. Taube, MD

10 solid tumor types in 8135 patients

Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade

Sneha Berry†, Nicolas A. Giraldo†, Benjamin F. Green†, Tricia R. Cottrell, Julie E. Stein, Elizabeth L. Engle, Haiying Xu, Aleksandra Ogurtsova, Charles Roberts, Daphne Wang, Peter Nguyen, Qingfeng Zhu, Sigfredo Soto-Diaz, Jose Loyola, Inbal B. Sander, Pok Fai Wong, Shlomit Jessel, Joshua Doyle, Danielle Signer, Richard Wilton, Jeffrey S. Roskes, Margaret Eminizer, Seyoun Park, Joel C. Sunshine, Elizabeth M. Jaffee, Alexander Baras, Angelo M. De Marzo, Suzanne L. Topalian, Harriet Kluger, Leslie Cope, Evan J. Lipson, Ludmila Danilova, Robert A. Anders, David L. Rimm, Drew M. Pardoll, Alexander S. Szalay†, Janis M. Taube*†

Sloan Digital Sky Survey

Science &

technology Apr 24th 2021 edition >

Cano

Cancer research

Mapping cancer as if it were the universe

Techniques from astronomy are being applied to medicine

Berry S... Szalay AS and Taube JM; Science 2021

Minimizing instrument errors during field acquisition and stitching of whole slide using lessons from astronomy

Six PLEX 127,400 image mosaics 100 million single cells

Melanoma Anti PD1 Rx prediction: CD163+PD-L1- myeloid cells & CD8+FoxP3+PD-1low/mid T cells
CHALLENGES

Impact on Pathology and Lab Medicine

- 1) Unprecedented demands on **Expertise** and **Capital**
 - Evolution and adaptation of pathology work force
 - \$\$ Investment
- 2) **Financial viability** in constrained healthcare economics

Evolution of Pathology Work Force

 Education of the pathologist of the future Residency curriculum adjustment Fellowship modifications Multichannel Learning

https://www.nature.com/collections/fbdjhcfiia

 Pathologist Physician Scientist Training Pipelines (MSTP, Integrated Residency Track) Junior faculty mentorship Enhance integration in clinical & translational research teams

Conclusions & Open Discussion

- The future is ours to claim if we embrace the unstoppable change in our profession
- Precision medicine opens new doors for pathologists to be on the frontlines of patient care delivery
- Tough economic challenges are not insurmountable but will require operational and Business Models adjustments

Acknowledgements

George J. Netto Lab

- Marie-Lisa Eich
- Maria del Carmen Rodriguez Peña
- Aline C. Tregnago
- Diana Taheri
- Stephania M. Bezerra
- Enrico Munari
- Sheila F. Faraj

Bert Vogelstein Lab: Howard Hughes Medical Institute, Ludwig Center

- Simeon U. Springer
- Isaac Kinde
- Cristian Tomasetti
- Luis A. Diaz
- Christopher Douville
- Yuxuan Wang
- Nickolas Papadopoulos
- Kenneth W. Kinzler

Johns Hopkins University

- Trinity J. Bivalacqua
- Christopher VandenBussche
- Ralph H. Hruban

•

AC Camargo Cancer Center, Brasil

- Stephania M. Bezerra
- Isabela W. Cunha

Osaka University, Japan

Kazutoshi Fujita

Hacettepe University, Turkey

Dilek Ertoy

Stony Brook University

- Kathleen G Dickman
- Arthur P Grollman

National Taiwan University Hospital

- Chao-Yuan Huang
- Yeong-Shiau Pu
- Chung-Hsin Chen

Funding

- NIH (Grants CA-77598, CA 06973, GM 07309, and ES019564).
- National Science Council, Taiwan to CHC (104-2314-B-002-132) and to YSP (104-2314-B-002-121-MY3)
- Henry and Marsha Laufer
- Virginia and DK Ludwig Fund for Cancer Research
- Commonwealth Foundation
- John Templeton Foundation
- Conrad R Hilton Foundation.

JOHN TEMPLETON

CONRAD N.

FOUNDATION

LAB MEDICINE

Knowledge that will change your world

Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater

Martin Reck, MD, PhD¹; Delvys Rodríguez-Abreu, MD²; Andrew G. Robinson, MD³; Rina Hui, MBBS, PhD⁴; Tibor Csőszi, MD⁵; Andrea Fülöp, MD⁶; Maya Gottfried, MD⁷; Nir Peled, MD, PhD⁸; Ali Tafreshi, MD⁹; Sinead Cuffe, MD¹⁰; Mary O'Brien, MD¹¹; Suman Rao, MD¹²; Katsuyuki Hotta, MD, PhD¹³; Kristel Vandormael, MSc¹⁴; Antonio Riccio, PhD¹⁵; Jing Yang, PhD¹⁵; M. Catherine Pietanza, MD¹⁵; and Julie R. Brahmer, MD¹⁶

Reck M et al JCO 2019

В

Subgroup	HR (95% CI)	
Overall (N = 305)	0.63 (0.47 to 0.86)	
Age, years		
< 65 (n = 141)	0.60 (0.38 to 0.96)	
≥ 65 (n = 164)	0.64 (0.42 to 0.98)	
Sex		
Male (n = 187)	0.54 (0.36 to 0.79)	i
Female (n = 118)	0.95 (0.56 to 1.62)	÷
Enrollment region		
East Asia (n = 40)	0.35 (0.12 to 1.01)	
Non-East Asia (n = 265)	0.67 (0.49 to 0.93)	
ECOG PS		
0 (n = 107)	0.78 (0.44 to 1.37)	
1 (n = 197)	0.56 (0.39 to 0.81)	
Histology		
Squamous $(n = 56)$	0.73 (0.38 to 1.39)	
Nonsquamous (n = 249)	0.58 (0.41 to 0.83)	
Smoking status		
Current (n = 65)	0.81 (0.41 to 1.60)	
Former (n = 216)	0.59 (0.41 to 0.85)	
Never $(n = 24)$	0.90 (0.11 to 7.59)	
Treated brain metastases		
Yes (n = 28)	0.73 (0.20 to 2.62)	
No (n = 277)	0.64 (0.46 to 0.88)	
Chemotherapy regimen		Ī
With pemetrexed $(n = 199)$	0.66 (0.45 to 0.97)	
Without pemetrexed $(n = 106)$	0.56 (0.33 to 0.95)	
	,	
		······
		0.1 1 10
		Pembrolizumab better Chemotherapy better
		HR (95% CI)
		. ,

First-Line Nivolumab Plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers

Neal Ready, MD, PhD¹; Matthew D. Hellmann, MD²; Mark M. Awad, MD, PhD³; Gregory A. Otterson, MD⁴; Martin Gutierrez, MD⁵; Justin F. Gainor, MD⁶; Hossein Borghaei, DO⁷; Jacques Jolivet, MD⁸; Leora Horn, MD⁹; Mihaela Mates, MD¹⁰; Julie Brahmer, MD¹¹; Ian Rabinowitz, MD¹²; Pavan S. Reddy, MD¹³; Jason Chesney, MD, PhD¹⁴; James Orcutt, MD¹⁵; David R. Spigel, MD¹⁶; Martin Reck, PhD¹⁷; Kenneth John O'Byrne, MD¹⁸; Luis Paz-Ares, MD, PhD¹⁹; Wenhua Hu, PhD²⁰; Kim Zerba, PhD²⁰; Xuemei Li, MD²⁰; Brian Lestini, MD, PhD²⁰; William J. Geese, PhD²⁰; Joseph D. Szustakowski, PhD²⁰; George Green, PhD²⁰; Han Chang, PhD²⁰; and Suresh S. Ramalingam, MD²¹

Ready N et al JCO 2019

Laboratory Informatics, Data Analytics and Big Data

Pathology and Lab Med Opportunities

- Big Data: 2/3 of EMR data is Lab Med data Clinical Laboratory scientists are positioned to be the "Rock Stars" of Big Data ⁽³⁾
- Clinical decision support
- Judicial test utilization
- Patient outcome optimization
- Phenotype/Genotype datasets \$\$\$

https://health.usf.edu https://www.datanami.com https://theconversation.com

CHALLENGES

Impact on Pathology and Lab Medicine

- 1) Unprecedented demands on **Expertise** and **Capital**
 - Evolution and adaptation of pathology work force
 - \$\$ Investment
- 2) **Financial viability** in constrained healthcare economics

Evolution of Pathology Work Force

- Education of the pathologist of the future
 Residency curriculum adjustment
 Fellowship modifications
- Pathologist Physician Scientist Training Pipelines (MSTP, Integrated Residency Track) Junior faculty mentorship Enhance integration in clinical & translational research teams

Financial Viability "Precision" Pathology Service

"Precision" Pathology Service

- Value Based Product
- Quality that impacts patient outcome
 Downstream cost savings
- Judicial test utilization

Evidence based/Guidelines driven utilization (NCCN, AMP/CAP/ASCO)

 Pathologist of the future is a <u>vital</u> player in patient management team Molecular multidisciplinary tumor boards Diagnostic Management Teams (DMT) Cell Therapy (CAR-T Cell)

Financial Viability of Pathology Services

New Revenue Stream

Expanding Services Portfolio

Community Network Services Monetize Knowledge/ Processes transfer (National and International) Anatomic Pathology Consultations Services (Digital Path/Telehealth)*

Discovery and Innovation

Entrepreneurial opportunities of Translational Pathology* Academic/Industry/NFP partnerships

Growth of Pathology Research Enterprise

Research Funding

- NIH
 2022: Biden admin proposes
 \$51.9 billion (21% increase)
- Other Governmental DOD/ VA
- Non-Governmental Foundations
- Philanthropy
- Industry Grants

Congressional Research Service

Figure 1. National Institutes of Health (NIH) Funding, FY1996-FY2022

Program Level Funding in Current and Projected Constant (FY2022) Dollars.

Growth of Pathology Research Enterprise

FOLLOW THE MONEY !!

- "Late" translational research
- Aging
- Health Disparity/Population health
- Tissue/Biospecimen Repositories
- URiM

Conclusions & Open Discussion

- The future is ours to claim if we embrace the unstoppable change in our profession
- Precision medicine opens new doors for pathologists to be on the frontlines of patient care delivery
- Tough economic challenges are not insurmountable but will require operational and Business Models adjustments

Open Discussion

Personal Research Contributions

Personal Research Contributions

- TMPRSS2-ERG Fusion in Prostate Ca
- MTOR Pathway Alterations in GU Malignancies
- Molecular Assays for Early Detection of Bladder Ca & UTUC
- Tumor Immune Microenvironment and Molecular Classification (Basal/Luminal) in MIBC and NMIBC

Personal Research Contributions

- TMPRSS2-ERG Fusion in Prostate Ca
- MTOR Pathway Alterations in GU Malignancies
- Molecular Assays for Early Detection of Bladder Ca & UTUC
- Tumor Immune Microenvironment and Molecular Classification (Basal/Luminal) in MIBC and NMIBC

Urine: The "other" Liquid Biopsy

Urine Liquid Biopsy Analytes

Exfoliated cellular NA (3x10⁶ cells daily)

ucfDNA

- HMW (1K bp): Necrotic cells (shed)
- LMW (**150**-250 bp)
 - Apoptotic cells (shed)
 - Transrenal DNA (trDNA)
- ucfDNA of fetal origin (29-45bp)
- ucfRNA (miRNA)

ΕV

Clinical application	Markers	Types of cancer		Detection methods	References
Detection/Diagnosis	UcfDNA concentration	Bladder cancer		GeneQuant Pro	Zancan et al. [54]
				Quant-iT DNA high-sensitivity assay kit	
				Real-time PCR	
				NanoDrop 1000	
	UcfDNA/UCr concentration and ucfDNA	Bladder cancer		PicoGreen 400-bp real-time PCR	Chang et al. [25]
	integrity				
	UcfDNA quantification	Bladder cancer		Real-time PCR	Brisuda et al. [55]
	TopollA levels	NMIBC		Real-time PCR	Kim et al. [60]
	UcfDNA integrity	Bladder cancer		Real-time PCR using IQ SYBR Green	Casadio et al. [38]
	Six microsatellite markers on chromo- somes 4, 9, and 17	Bladder cancer		PCR	Utting et al. [66]
	Twelve microsatellite markers on 6 chro- mosomes	Bladder cancer		PCR	Szarvas et al. [13]
	TSPAN13-to-S100A9 ratio	Prostate cancer		Real-time PCR	Yan et al. [68]
	UcfDNA integrity (c-Myc, BCAS1, and HER2)	Prostate cancer		Real-time PCR	Casadio et al. [39]
	UcfDNA integrity (c-MYC, HER2, and AR)	Prostate cancer		Real-time PCR	Salvi et al. [69]
	GSTP1 gene promoter hypermethylation	Prostate cancer		Methylation-specific PCR	Bryzgunova et al. [72]
	KRAS mutations	Advanced colorecta	adenocarcinoma and	PCR	Botezatu et al. [18]
		advanced pancreati	c cancer		
	KRAS mutations	Colorectal cancer		Restriction-enriched PCR	Su et al. [17, 33, 35]
	mVIM	Colorectal cancer		Quantitative MethyLight PCR-based assay	Song et al. [73]
	TP53 mutation	Hepatocellular carci	noma	Locked nucleic acid clamp-mediated PCR assay	Lin et al. [74]
	HCC-associated HBV mutation	HBV-associated hep	atocellular carcinoma	Real-time PCR	Lin et al. [75]
	HPV DNA	Cervical cancer		NGS	Guerrero-Preston et al. [80]
Surveillance of cancer progression	Somatic variants	Bladder cancer		ddPCR	Birkenkamp-Demtröder et al. [8]
	Somatic variants	UBC		OncoScan assay	Togneri et al. [82]
	FGFR3 and PIK3CA mutations	Bladder cancer		ddPCR	Christensen et al. [83]
	EGFR mutations	NSCLC		ddPCR	Li et al. [88]
	KRAS mutations	NSCLC		ddPCR	Wang et al. [85]
Monitoring treatment response	Copy number variations	Prostate cancer		Whole genome sequencing	Xia et al. [86]
5	EGFR mutations	NSCLC		Short footprint mutation enrichment NGS	Reckamp et al. [40]
	EGFR mutations	NSCLC		ddPCR	Li et al. [84]
				1	Chen et al. [89]
					Husain et al. [96]
					Tchekmedvian et al. [91]
	EGFR mutations	Gastric cancer		ddPCR	Shi et al. [36]
	CAD-ALK gene rearrangement	Colorectal cancer		NGS	Siravegna et al. [92]
	BRAF V600E mutations	Colorectal neuroend	locrine cancer	PCR	Klempner et al. [93]
	KRAS G12/G13 mutations	Advanced cancers		Mutation-enrichment NGS	Fujii et al. [41]
Prognosis	EBV DNA	Nasopharyngeal car	rcinoma	Real-time PCR	Chan et al. [94]
-		,			Sengar et al. [95]
	EGFR mutations	NSCLC		ddPCR	Li et al. [84]
					· · · · · ·

Table 1. Summary of potential clinical applications of ucfDNA in cancer

Urine Liquid Biopsy Applications

Lu T, Li J.. Am J Cancer Res. 2017

Abbreviations: uc/DNA, urinary cell-free DNA; NMIBC, non-muscle-invasive bladder cancer; GSTP1, glutathione S-transferase P1 gene; mVIM, hypermethylated vimentin gene; NGS, next-generation sequencing; ddPCR, droplet digital PCR; UBC urothelial bladder cancer; NSCLC, non-small cell lung cancer.

TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal

Patrick J. Killela^{a,1}, Zachary J. Reitman^{a,1}, Yuchen Jiao^{b,1}, Chetan Bettegowda^{b,c,1}, Nishant Agrawal^{b,d}, Luis A. Diaz, Jr.^b, Allan H. Friedman^a, Henry Friedman^a, Gary L. Gallia^{c,d}, Beppino C. Giovanella^e, Arthur P. Grollman^f, Tong-Chuan He^g, Yiping He^a, Ralph H. Hruban^h, George I. Jallo^c, Nils Mandahlⁱ, Alan K. Meeker^{h,m}, Fredrik Mertensⁱ, George J. Netto^{h,1}, B. Ahmed Rasheed^a, Gregory J. Riggins^c, Thomas A. Rosenquist^f, Mark Schiffman^j, Ie-Ming Shih^h, Dan Theodorescu^k, Michael S. Torbenson^h, Victor E. Velculescu^b, Tian-Li Wang^h, Nicolas Wentzensen^j, Laura D. Wood^h, Ming Zhang^b, Roger E. McLendon^a, Darell D. Bigner^a, Kenneth W. Kinzler^b, Bert Vogelstein^{b,2}, Nickolas Papadopoulos^b, and Hai Yan^{a,2}

Killela PJ et al. PNAS 2013

- **TERT** promoter mutations in **1,230** tumor
- Identified TERT mutations in 231 (18.8%) tumors
 - **C228T** (77.5%)
 - **C250T** (20.8%)
 - Rare C228A and C229A mutation
- TERT & ATRX mutations mutually exclusive

Priority Report

Cancer Research

TERT Promoter Mutations Occur Early in Urothelial Neoplasia and Are Biomarkers of Early Disease and Disease Recurrence in Urine

Isaac Kinde¹, Enrico Munari², Sheila F. Faraj², Ralph H. Hruban^{2,3}, Mark Schoenberg⁴, Trinity Bivalacqua⁴, Mohamad Allaf⁴, Simeon Springer¹, Yuxuan Wang¹, Luis A. DiazJr¹, Kenneth W. Kinzler¹, Bert Vogelstein¹, Nickolas Papadopoulos¹, and George J. Netto^{2,3,4}

Kinde I et al Cancer Research 2013

- 76 noninvasive urothelial carcinomas
 - 28 pTa LG
 - 31 pTa HG
 - 17 pTis CIS

• 14 early bladder neoplasms and matched follow-up urine

TERT promoter mutation	рТа LG (<i>N</i> = 28)	рТа НG (<i>N</i> = 31)	CIS (<i>N</i> = 17)	<u>P</u>
Present (%)	24/28 (86%)	21/31 (68%)	11/17 (65%)	0.18

Abbreviations: HG, high-grade noninvasive urothelial carcinoma; LG, low-grade noninvasive urothelial carcinoma.

TERT mutation in follow-up urine	Number of patients	Recurred	Did not recur	Р
Present	8	8/8 (100%)	0/8 (0%)	< 0.001
Absent	7	1/7 (11%)	6/7 (89%)	$(r = 0.87)^{a}$

Ludwig Cancer Research JHU Pathology JHU Brady Institute

- Two Application Settings
 - Surveillance
 - ED: Primary Screen (Hematuria no prior TCC)
- International Collaborators
 - Osaka University, Japan
 - AC CAMARGO Cancer Ctr, Brazil
 - Hacettepe University, Turkey
 - Taiwan UTUC
- >2800 Urine and > 600 FFPE Sequenced

UroSEEK in Bladder Cancer Tissue

Incidence and Distribution of UroSEEK Gene Panel in a Multi-institutional Cohort of Bladder Urothelial Carcinoma

Marie-Lisa Eich¹, Maria Del Carmen Rodriguez Pena¹, Simeon Springer^{2,3}, Diana Taheri^{4,5}, Aline C. Tregnago⁴, Daniela C. Salles⁴, Stephania Martins Bezerra^{6,7}, Isabela W. Cunha⁶, Kazutoshi Fujita⁸, Dilek Ertoy⁹, Trinity J. Bivalacqua¹⁰, Cristian Tomasetti^{11,12}, Nickolas Papadopoulos^{2,3}, Ken W. Kinzler^{2,3}, Bert Vogelstein^{2,3}, George J. Netto¹

- **527** tumors from 484 patients
 - 188 LGTa
 - 129 HGTa
 - 56 CIS
 - 111 pT1 tumors
 - 43 MIBC
- 36 patients with more than one tumor analyzed

Eich et al. Mod Pathol 2019

UroSEEK in Bladder Cancer Tissue

Eich et al. Mod Pathol 2019

Targeted sequencing of plasmacytoid urothelial carcinoma reveals frequent *TERT* promoter mutations $\overset{\nleftrightarrow, \overset{\leftrightarrow}{\sim} \overset{\leftrightarrow}{\sim}}$

Doreen N. Palsgrove MD^a, Diana Taheri MD^{a,b}, Simeon U. Springer PhD^{c,d}, Morgan Cowan MD^a, Gunes Guner MD^a, Maria A. Mendoza Rodriguez MD^a, Maria Del Carmen Rodriguez Pena MD^{a,e}, Yuxuan Wang BS^d, Isaac Kinde MD, PhD^d, Bernardo F.P. Ricardo MD^a, Isabela Cunha MD, PhD^f, Kazutoshi Fujita MD, PhD^g, Dilek Ertoy MD^h, Kenneth W. Kinzler PhD^{c,d}, Trinity J. Bivalacqua MD, PhDⁱ, Nickolas Papadopoulos PhD^{c,d}, Bert Vogelstein MD^{c,d}, George J. Netto MD^{a,e,*}

Human Pathology (2019) 85, 1-9

High prevalence of *TERT* promoter mutations in micropapillary urothelial carcinoma

Doreen Nguyen¹ • Diana Taheri^{1,5} • Simeon Springer^{3,4} • Morgan Cowan¹ • Gunes Guner¹ • Maria Angelica Mendoza Rodriguez¹ • Yuxuan Wang⁴ • Isaac Kinde⁴ • Christopher J. VandenBussche¹ • Matthew T. Olson¹ • Bernardo F. P. Ricardo¹ • Isabela Cunha⁶ • Kazutoshi Fujita⁷ • Dilek Ertoy⁸ • Kenneth W. Kinzler^{3,4} • Trinity J. Bivalacqua² • Nickolas Papadopoulos^{3,4} • Bert Vogelstein^{3,4} • George J. Netto^{1,2,9}

Virchows Arch (2016) 469:427–434

Detection of *TERT* promoter mutations in primary adenocarcinoma of the urinary bladder $\overset{\leftrightarrow}{\sim}, \overset{\leftrightarrow}{\sim} \overset{\leftrightarrow}{\sim}$

Morgan L. Cowan MD^a, Simeon Springer PhD^{b,c}, Doreen Nguyen MD^a, Diana Taheri MD^a, Gunes Guner MD^a, Maria Angelica Mendoza Rodriguez MD^a, Yuxuan Wang BS^c, Isaac Kinde MD, PhD^c, Maria Del Carmen Rodriguez Pena MD^a, Christopher J. VandenBussche MD, PhD^a, Mathew T. Olson MD, PhD^a, Isabela Cunha MD, PhD^d, Kazutoshi Fujita MD, PhD^e, Dilek Ertoy MD^f, Kenneth Kinzler PhD^{b,c}, Trinity Bivalacqua MD, PhD^g, Nickolas Papadopoulos PhD^{b,c}, Bert Vogelstein MD^{b,c}, George J. Netto MD^{a,g,*}

Human Pathology (2016) **53**, 8–13

(CrossMark

High prevalence of *TERT* promoter mutations in primary squamous cell carcinoma of the urinary bladder

Morgan Cowan¹, Simeon Springer^{2,3}, Doreen Nguyen¹, Diana Taheri¹, Gunes Guner¹, Maria Angelica Mendoza Rodriguez¹, Yuxuan Wang³, Isaac Kinde³, Christopher J VandenBussche¹, Matthew T Olson¹, Isabela Cunha⁴, Kazutoshi Fujita⁵, Dilek Ertoy⁶, Trinity J Bivalacqua⁷, Kenneth Kinzler^{2,3}, Bert Vogelstein^{2,3}, George J Netto^{1,7} and Nickolas Papadopoulos^{2,3}

MODERN PATHOLOGY (2016) 29, 511–515

Spectrum of genetic mutations in de novo PUNLMP of the urinary bladder

Maria Del Carmen Rodriguez Pena¹ · Aline C. Tregnago¹ · Marie-Lisa Eich¹ · Simeon Springer² · Yuxuan Wang² · Diana Taheri¹ · Dilek Ertoy³ · Kazutoshi Fujita⁴ · Stephania M. Bezerra⁵ · Isabela W. Cunha⁵ · Maria Rosaria Raspollini⁶ · Lijia Yu⁷ · Trinity J. Bivalacqua⁸ · Nickolas Papadopoulos² · Kenneth W. Kinzler² · Bert Vogelstein² · George J. Netto^{1,7,9}

Virchows Arch (2017) 471:761–767

Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy

Simeon U Springer^{1,2†}, Chung-Hsin Chen^{3†}, Maria Del Carmen Rodriguez Pena^{4,5†}, Lu Li⁶, Christopher Douville⁷, Yuxuan Wang^{1,2}, Joshua David Cohen^{1,2}, Diana Taheri^{4,8}, Natalie Silliman^{1,2}, Joy Schaefer^{1,2}, Janine Ptak^{1,2}, Lisa Dobbyn^{1,2}, Maria Papoli^{1,2}, Isaac Kinde^{1,2}, Bahman Afsari^{9,10}, Aline C Tregnago⁴, Stephania M Bezerra¹¹, Christopher VandenBussche⁴, Kazutoshi Fujita¹², Dilek Ertoy¹³, Isabela W Cunha¹¹, Lijia Yu⁵, Trinity J Bivalacqua¹⁴, Arthur P Grollman^{15,16}, Luis A Diaz¹⁷, Rachel Karchin^{7,9}, Ludmila Danilova^{10,13}, Chao-Yuan Huang³, Chia-Tung Shun¹⁸, Robert J Turesky^{19,20}, Byeong Hwa Yun^{19,20}, Thomas A Rosenquist¹⁵, Yeong-Shiau Pu³, Ralph H Hruban⁴, Cristian Tomasetti^{6,10}, Nickolas Papadopoulos^{1,2}, Ken W Kinzler^{1,2}, Bert Vogelstein^{1,2*}, Kathleen G Dickman^{15,16*}, George J Netto^{4,5*}

Springer et al. eLife 2018

TERTSeqS and **UroSeqS**

Safe SeqS (Safe-Sequencing System)

- Cellular DNA
- Massively parallel sequencing

- Error reducing approach
 - Unique Identifier for family of template
 - Supermutant (95%)
- Applicable for identifying mutations in a small fraction of DNA templates (0.03%)

FastSeqS

- Aneuploidy Analysis
- Massively parallel sequencing
- Single primer pair to amplify about 38,000 loci scattered throughout the genome
- Gains and losses in **39 chromosome arms** can be detected

UroSEEK in Equivocal Urine Cytology

Performance of Novel Non-Invasive Urine Assay UroSEEK in a Cohort of Atypical Cytology

Maria Del Carmen Rodriguez Pena¹, Simeon U. Springer², Diana Taheri⁴, Marie-Lisa Eich¹, Aline C. Tregnago³, Christopher J. VandenBussche³, Isam-Eldin A. Eltoum¹, Nickolas Papadopoulos², Kenneth W. Kinzler², Bert Vogelstein², George J. Netto^{1,3}

Paris System: significant proportion of equivocal dx "atypical" or "suspicious" categories

ED:

- 375 urine samples (348 patients)
- 114/375 (**30%)** ATYP

Surveillance:

- 717 urine samples (496 patients)
- 332/717 (**46%)** ATYP

UroSEEK in Equivocal Urine Cytology: Early Detection

	UroSEEK	TERTSeqS	UROSeqS	FastSeqS
Sensitivity	96%	63%	88%	54%
Specificity	87%	90%	96%	99%
NPV	99%	90%	97%	89%
PPV	66%	63%	84%	93%

Rodriguez Pena et al. Virchow Pathol 2020

UroSEEK in Equivocal Urine Cytology: Surveillance

	UroSEEK	TERTSeqS	UROSeqS	FastSeqS
Sensitivity	74%	65%	54%	59%
Specificity	72%	77%	89%	80%
NPV	53%	47%	44%	45%
PPV	87%	87%	92%	88%

Rodriguez Pena et al. Virchow Pathol 2020

UroSEEK/CancerSEEK/PapSEEK

CANCER

Detection and localization of surgically resectable cancers with a multi-analyte blood test

Joshua D. Cohen,^{1,2,3,4,5} Lu Li,⁶ Yuxuan Wang,^{1,2,3,4} Christopher Thoburn,³ Bahman Afsari,⁷ Ludmila Danilova,⁷ Christopher Douville,^{1,2,3,4} Ammar A. Javed,⁸ Fay Wong,^{1,3,4} Austin Mattox,^{1,2,3,4} Ralph. H. Hruban,^{3,4,9} Christopher L. Wolfgang,⁸ Michael G. Goggins,^{3,4,9,10,11} Marco Dal Molin,⁴ Tian-Li Wang,^{3,9} Richard Roden,^{3,9} Alison P. Klein,^{3,4,12} Janine Ptak,^{1,2,3,4} Lisa Dobbyn,^{1,3,4} Joy Schaefer,^{1,3,4} Natalie Silliman,^{1,2,3,4} Maria Popoli,^{1,3,4} Joshua T. Vogelstein,¹³ James D. Browne,¹⁴ Robert E. Schoen,^{15,16} Randall E. Brand,¹⁵ Jeanne Tie,^{17,18,19,20} Peter Gibbs,^{17,18,19,20} Hui-Li Wong,¹⁷ Aaron S. Mansfield,²¹ Jin Jen,²² Samir M. Hanash,²³ Massimo Falconi,²⁴ Peter J. Allen,²⁵ Shibin Zhou,^{1,3,4} Chetan Bettegowda,^{1,3,4} Luis A. Diaz Jr.,^{1,3,4*} Cristian Tomasetti,^{3,6,7}† Kenneth W. Kinzler,^{1,3,4}† Bert Vogelstein,^{1,2,3,4} Anne Marie Lennon,^{3,4,8,10,11}† Nickolas Papadopoulos^{1,3,4}†

Cohen, J.D., et al. Science, 2018

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers

Yuxuan Wang,¹ Lu Li,² Christopher Douville,¹ Joshua D. Cohen,^{1,3} Ting-Tai Yen,⁴ Isaac Kinde,⁵ Karin Sundfelt,⁶ Susanne K. Kjær,^{7,8} Ralph H. Hruban,⁹ le-Ming Shih,⁹ Tian-Li Wang,⁹ Robert J. Kurman,⁹ Simeon Springer,¹ Janine Ptak,¹ Maria Popoli,¹ Joy Schaefer,¹ Natalie Silliman,¹ Lisa Dobbyn,¹ Edward J. Tanner,⁴ Ana Angarita,⁴ Maria Lycke,⁶ Kirsten Jochumsen,¹⁰ Bahman Afsari,² Ludmila Danilova,² Douglas A. Levine,¹¹ Kris Jardon,¹² Xing Zeng,¹² Jocelyne Arseneau,¹² Lili Fu,¹² Luis A. Diaz Jr.,¹ Rachel Karchin,¹³ Cristian Tomasetti,^{2*} Kenneth W. Kinzler,^{1*} Bert Vogelstein,^{1,14*} Amanda N. Fader,^{4*} Lucy Gilbert,^{12*} Nickolas Papadopoulos^{1*}

Wang Y., et al. Sci Trans Med, 2018

- Bring down **cost** per test
- Secure funding for CLIA grade test development and FDA approval
- Head to head prospective study with UroVysion (Non-inferiority approval)
- Commercialization

Voided Urine Sample 99% WBCs 1% Squamous cells

Enriched Sample

3% WBCs

41% Squamous cells

57% Urothelial cells

Jonathan Dudley

- SaferSeq sequencing panel
- Panel designed based on UroSEEK cohort MSK-IMPACT cohort
- 18-amplicon covers at least 1 driver mutation in 97% (median 2 per patient)

Conclusions & Open Discussion

- The future is ours to claim if we embrace the unstoppable change in our profession
- Precision medicine opens new doors for pathologists to be on the frontlines of patient care delivery
- Tough economic challenges are not insurmountable but will require operational and Business Models adjustments

Acknowledgements

George J. Netto Lab

- Marie-Lisa Eich
- Maria del Carmen Rodriguez Peña
- Aline C. Tregnago
- Diana Taheri
- Stephania M. Bezerra
- Enrico Munari
- Sheila F. Faraj

Bert Vogelstein Lab: Howard Hughes Medical Institute, Ludwig Center

- Simeon U. Springer
- Isaac Kinde
- Cristian Tomasetti
- Luis A. Diaz
- Christopher Douville
- Yuxuan Wang
- Nickolas Papadopoulos
- Kenneth W. Kinzler

Johns Hopkins University

- Trinity J. Bivalacqua
- Christopher VandenBussche
- Ralph H. Hruban

•

AC Camargo Cancer Center, Brasil

- Stephania M. Bezerra
- Isabela W. Cunha

Osaka University, Japan

Kazutoshi Fujita

Hacettepe University, Turkey

Dilek Ertoy

Stony Brook University

- Kathleen G Dickman
- Arthur P Grollman

National Taiwan University Hospital

- Chao-Yuan Huang
- Yeong-Shiau Pu
- Chung-Hsin Chen

Funding

- NIH (Grants CA-77598, CA 06973, GM 07309, and ES019564).
- National Science Council, Taiwan to CHC (104-2314-B-002-132) and to YSP (104-2314-B-002-121-MY3)
- Henry and Marsha Laufer
- Virginia and DK Ludwig Fund for Cancer Research
- Commonwealth Foundation
- John Templeton Foundation
- Conrad R Hilton Foundation.

JOHN TEMPLETON

CONRAD N.

FOUNDATION

Open Discussion

EGFR Mutations in NSCLC

	EGFR mutation	EGRF wild type	K-ras mutation	K-ras wild type
AdenoCA*	20%	80%	22%	78%
Non-AdenoCA	13%	87%	5%	95%
Female	18%	82%	14%	86%
Male	16%	84%	15%	85%
Smokers [#]	14%	86%	16%	84%
Never smoker	28%	72%	11%	89%
Asian	38%	62%	0%	100%
Non-Asian	15%	85%	16%	84%

NCICC Trials Group study BR.21 J Clin Oncol 2008

Ghafoor Q et al. Pathol & Oncol Res, 2018

Omics: Coming Together...

- Genomic advances paved the way to Precision Medicine
- Multiparametric Analyses (e.g. TCGA studies)
 - DNA
 - RNA
 - Protein
 - Epigenetics
- Robust Molecular Classifications
 - Functional role of molecular alterations across tumor types
 - Druggable targets

Omics: Coming Together...

- Genomic advances paved the way to Precision Medicine
- Multiparametric Analyses (e.g. TCGA studies)
 - DNA
 - RNA
 - Protein
 - Epigenetics
- Robust Molecular Classifications
 - Functional role of molecular alterations across tumor types
 - Druggable targets

Acquired EGFR Rx Resistance

Mutation in exon 20 (T790M)

Kobayashi S et al. N Engl J Med 2005 Maheswaran et al N Engl J Med 2008 Pao W et al. PlosMed 2005

Amplification of MET gene (7q31)

Engelman JA. Science 2007; 316(5827);1039-43 Sequist et al 2008 JCO

- The CellSearch system (Menarini Silicon Biosystems)
 - Metastatic breast, prostate or CRCa
 - CTC platform
- Cobas EGFR Mutation Test v2 (Roche Molecular Diagnostics)
 - NSCLC
 - Detects EGFR mutations in plasma cfDNA
- Epi proColon (Epigenomics AG)
 - CRCa screening assay
 - Methylation status of SEPT9 promoter in plasma cfDNA

Check for updates

Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer

Rolfo C et al , J Thoracic Oncol October 2021

A machine learning approach for somatic mutation discovery

Derrick E. Wood¹, James R. White¹, Andrew Georgiadis¹, Beth Van Emburgh¹, Sonya Parpart-Li¹, Jason Mitchell¹, Valsamo Anagnostou², Noushin Niknafs², Rachel Karchin^{2,3}, Eniko Papp¹, Christine McCord¹, Peter LoVerso¹, David Riley¹, Luis A. Diaz Jr.⁴, Siân Jones¹, Mark Sausen¹, Victor E. Velculescu^{2,*}, and Samuel V. Angiuoli^{1,*}

¹Personal Genome Diagnostics, Baltimore, MD 21224, USA.

²The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Sci Transl Med. 2018 September 05

Genetic Alterations in Lung Adenocarcinoma

A Mutations in adenocarcinoma

B Mutations in squamous-cell carcinoma

Rafael Rosell, Niki Karachaliou, Lancet 2016

Genetic Alterations in Lung Adenocarcinoma

Chen et al. Journal of Hematology & Oncology (2020)

RESEARCH ARTICLE

Resolving the Spatial and Cellular Architecture of Lung Adenocarcinoma by Multiregion Single-Cell Sequencing 2

Ansam Sinjab¹, Guangchun Han², Warapen Treekitkarnmongkol¹, Kieko Hara¹, Patrick M. Brennan³, Minghao Dang², Dapeng Hao², Ruiping Wang², Enyu Dai², Hitoshi Dejima¹, Jiexin Zhang⁴, Elena Bogatenkova³, Beatriz Sanchez-Espiridion¹, Kyle Chang⁵, Danielle R. Little⁶, Samer Bazzi⁷, Linh M. Tran⁸, Kostyantyn Krysan⁸, Carmen Behrens⁹, Dzifa Y. Duose¹, Edwin R. Parra¹, Maria Gabriela Raso¹, Luisa M. Solis¹, Junya Fukuoka¹⁰, Jianjun Zhang⁹, Boris Sepesi¹¹, Tina Cascone⁹, Lauren Averett Byers⁹, Don L. Gibbons⁹, Jichao Chen⁶, Seyed Javad Moghaddam⁶, Edwin J. Ostrin¹², Daniel Rosen¹³, John V. Heymach⁹, Paul Scheet^{1,2,5}, Steven M. Dubinett⁸, Junya Fujimoto¹, Ignacio I. Wistuba¹, Christopher S. Stevenson¹⁴, Avrum Spira^{14,15}, Linghua Wang², and Humam Kadara¹

Sinjab A et al; Cancer Discovery 2021

perform single-cell RNA sequencing of 186,916 cells from five early-stage LUADs and 14 multiregion normal lung tissues of defined spatial

proximities from the tumors. We show that cellular lineages, states, and transcriptomic features

geospatially evolve across normal regions to LUADs. LUADs also exhibit pronounced intratumor cell

heterogeneity within single sites and transcriptional lineage-plasticity programs. T regulatory cell phenotypes

are increased in normal tissues with proximity to LUAD, in contrast to diminished signatures and fractions of cytotoxic CD8+ T cells,

antigen-presenting macrophages, and inflammatory dendritic

cells. We further find that the LUAD ligand– receptor interactome harbors increased expression of

epithelial CD24, which mediates protumor phenotypes. These data provide a spatial atlas of LUAD

evolution, and a resource for identification of targets for its treatment.

Significanc e: The geospatial ecosystem of the peripheral lung and early-stage LUAD is not

Rotow, J., Bivona, T. Nat Rev Cancer 2017

Spatial UMAP and Image Cytometry for Topographic Immuno-oncology Biomarker Discovery

Nicolas A. Giraldo¹, Sneha Berry², Etienne Becht³, Deniz Ates⁴, Kara M. Schenk², Elizabeth L. Engle⁵, Benjamin Green², Peter Nguyen⁵, Abha Soni⁵, Julie E. Stein⁵, Farah Succaria⁵, Aleksandra Ogurtsova⁵, Haiying Xu⁵, Raphael Gottardo³, Robert A. Anders¹, Evan J. Lipson², Ludmila Danilova², Alexander S. Baras¹, and Janis M. Taube^{1,2,5}

Sinjab A et al; Cancer Discovery 2021

The Economist

Science & technology Apr 24th 2021 edition >

Cancer research

Mapping cancer as if it were the universe

Techniques from astronomy are being applied to medicine

Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade

Sneha Berry⁺, Nicolas A. Giraldo⁺, Benjamin F. Green⁺, Tricia R. Cottrell, Julie E. Stein, Elizabeth L. Engle, Haiying Xu, Aleksandra Ogurtsova, Charles Roberts, Daphne Wang, Peter Nguyen, Qingfeng Zhu, Sigfredo Soto-Diaz, Jose Loyola, Inbal B. Sander, Pok Fai Wong, Shlomit Jessel, Joshua Doyle, Danielle Signer, Richard Wilton, Jeffrey S. Roskes, Margaret Eminizer, Seyoun Park, Joel C. Sunshine, Elizabeth M. Jaffee, Alexander Baras, Angelo M. De Marzo, Suzanne L. Topalian, Harriet Kluger, Leslie Cope, Evan J. Lipson, Ludmila Danilova, Robert A. Anders, David L. Rimm, Drew M. Pardoll, Alexander S. Szalay⁺, Janis M. Taube^{*+}

Berry S... Szalay AS and Taube JM; Science 2021

Minimizing instrumental errors during field acquisition and stitching of whole slide by using lessons from astronomy

The Protecting Access to Medicare Act of 2014 (PAMA) required significant changes to how Medicare pays for clinical diagnostic laboratory tests under the Clinical Laboratory Fee Schedule (CLFS). Effective January 1, 2018, the payment amount for most tests equals the weighted median of private payor rates. Payment rates under the private payor rate-based CLFS are updated every three years.

UroSEEK in Bladder Cancer Tissue

Eich et al. Mod Pathol 2019

Next Gen Pathologist

Indispensable Member of Integrated Healthcare Delivery Team

- Pathologist of the future is a <u>vital</u> player in patient management team Molecular multidisciplinary tumor boards Diagnostic Management Teams (DMT) Cell Therapy (CAR-T Cell)
- Elevating "Physician Profile" CAP "Meet your Pathologist" efforts AMP gene patent victory COVID-19
- Advocacy and government professional relation FDA LDT vs Companion Test; DTC; MOOP..

CancerSEEK

CANCER

Detection and localization of surgically resectable cancers with a multi-analyte blood test

Joshua D. Cohen,^{1,2,3,4,5} Lu Li,⁶ Yuxuan Wang,^{1,2,3,4} Christopher Thoburn,³ Bahman Afsari,⁷ Ludmila Danilova,⁷ Christopher Douville,^{1,2,3,4} Ammar A. Javed,⁸ Fay Wong,^{1,3,4} Austin Mattox,^{1,2,3,4} Ralph. H. Hruban,^{3,4,9} Christopher L. Wolfgang,⁸ Michael G. Goggins,^{3,4,9,10,11} Marco Dal Molin,⁴ Tian-Li Wang,^{3,9} Richard Roden,^{3,9} Alison P. Klein,^{3,4,12} Janine Ptak,^{1,2,3,4} Lisa Dobbyn,^{1,3,4} Joy Schaefer,^{1,3,4} Natalie Silliman,^{1,2,3,4} Maria Popoli,^{1,3,4} Joshua T. Vogelstein,¹³ James D. Browne,¹⁴ Robert E. Schoen,^{15,16} Randall E. Brand,¹⁵ Jeanne Tie,^{17,18,19,20} Peter Gibbs,^{17,18,19,20} Hui-Li Wong,¹⁷ Aaron S. Mansfield,²¹ Jin Jen,²² Samir M. Hanash,²³ Massimo Falconi,²⁴ Peter J. Allen,²⁵ Shibin Zhou,^{1,3,4} Chetan Bettegowda,^{1,3,4} Luis A. Diaz Jr,^{1,3,4*} Cristian Tomasetti,^{3,6,7}† Kenneth W. Kinzler,^{1,3,4}†

Cohen, J.D., et al. Science, 2018
ctDNA ASCO/CAP Joint Expert Panel Review

- Insufficient evidence of clinical validity and utility for majority of advanced cancers
- **Discordance** between ctDNA assays and tumor **tissue genotypin**g
 - supports tumor tissue genotyping to confirm undetected results from ctDNA
- No evidence of clinical utility and little evidence of clinical validity of ctDNA assays in early-stage cancer, Rx monitoring or MRD detection
- No evidence of clinical validity and clinical utility for cancer screening outside of a clinical trial

Merker, JD et al J Clin Oncol. 2018

TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal

Patrick J. Killela^{a,1}, Zachary J. Reitman^{a,1}, Yuchen Jiao^{b,1}, Chetan Bettegowda^{b,c,1}, Nishant Agrawal^{b,d}, Luis A. Diaz, Jr.^b, Allan H. Friedman^a, Henry Friedman^a, Gary L. Gallia^{c,d}, Beppino C. Giovanella^e, Arthur P. Grollman^f, Tong-Chuan He^g, Yiping He^a, Ralph H. Hruban^h, George I. Jallo^c, Nils Mandahlⁱ, Alan K. Meeker^{h,m}, Fredrik Mertensⁱ, George J. Netto^{h,I}, B. Ahmed Rasheed^a, Gregory J. Riggins^c, Thomas A. Rosenquist^f, Mark Schiffman^j, Ie-Ming Shih^h, Dan Theodorescu^k, Michael S. Torbenson^h, Victor E. Velculescu^b, Tian-Li Wang^h, Nicolas Wentzensen^j, Laura D. Wood^h, Ming Zhang^b, Roger E. McLendon^a, Darell D. Bigner^a, Kenneth W. Kinzler^b, Bert Vogelstein^{b,2}, Nickolas Papadopoulos^b, and Hai Yan^{a,2}

Killela PJ et al. PNAS 2013

CancerSEEK

- Detect 8 common cancer types through assessment of circulating proteins and mutations in ctDNA
- Combination of parameters increase sensitivity for early stage cancer
- 16 genes (61 amplicon) and 8 proteins (CA-125, CEA, CA19-9, prolactin, HGF, osteopontin, myeloperoxidase, TIMP-1)
- 1005 patients with non-metastatic cancers (ovary, liver, stomach, pancreas, esophagus, CRCa, lung, breast)
- Median **sensitivity 70%** for eight cancer types
- Sensitivities of 69-98% for the five cancer types without current screening program
- **Specificity >99% (7/812** healthy controls scored positive)

Voided Urine Sample 99% WBCs

PapSEEK

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

Evaluation of liquid from the Papanicolaou test and other liquid biopsies for the detection of endometrial and ovarian cancers

Yuxuan Wang,¹ Lu Li,² Christopher Douville,¹ Joshua D. Cohen,^{1,3} Ting-Tai Yen,⁴ Isaac Kinde,⁵ Karin Sundfelt,⁶ Susanne K. Kjær,^{7,8} Ralph H. Hruban,⁹ le-Ming Shih,⁹ Tian-Li Wang,⁹ Robert J. Kurman,⁹ Simeon Springer,¹ Janine Ptak,¹ Maria Popoli,¹ Joy Schaefer,¹ Natalie Silliman,¹ Lisa Dobbyn,¹ Edward J. Tanner,⁴ Ana Angarita,⁴ Maria Lycke,⁶ Kirsten Jochumsen,¹⁰ Bahman Afsari,² Ludmila Danilova,² Douglas A. Levine,¹¹ Kris Jardon,¹² Xing Zeng,¹² Jocelyne Arseneau,¹² Lili Fu,¹² Luis A. Diaz Jr.,¹ Rachel Karchin,¹³ Cristian Tomasetti,²* Kenneth W. Kinzler,^{1*} Bert Vogelstein,^{1,14}* Amanda N. Fader,⁴* Lucy Gilbert,¹²* Nickolas Papadopoulos¹*

Wang Y., et al. Sci Trans Med, 2018

UroSEEK/CancerSEEK/PapSEEK Next Steps

CHALLENGES Impact on Pathology and Lab Medicine

- Unprecedented Demands on Expertise and Capital due to rapidly changing technological platforms
 Evolution and adaptation of pathology work force
 \$\$ Investment
- 2) **Operational challenges** of Multidisciplinary **Integration** while maintaining "turf" advantage

3) Financial Viability in Constrained Health Care Economics

CHALLENGES Impact on Pathology and Lab Medicine

- Unprecedented Demands on Expertise and Capital due to rapidly changing technological platforms Evolution and adaptation of pathology work force \$\$ Investment
- Operational challenges of Multidisciplinary Integration while maintaining "turf" advantage

3) **Financial Viability** in Constrained Health Care Economics

Financial Viability of Pathology Services

Challenges of Affordable Care Act (ACA)

Episode of Care Bundling Cost Pressure Outcome Based Incentive

2020 Trump Admin Budget

12% reduction in **HHS** funding Deep cuts to **Medicare**, **GME**, and **Medicaid** Reduced funding for **NIH**, **VA** programs

Financial Viability "Precision" Pathology Service

Measurable Impact on Outcome

Genomic Data Integration in patient management tools Pharmacogenomics LIS/EMR

Big Data in Health Care

2/3 of medical records data is Lab Med Tests Data Pathologists are positioned to be the "Rock stars" of Big Data !

Financial Viability of Pathology Research Enterprise

Enhance Pathology Faculty Stream of Research Funding

- Invest in pipelines of physician scientist career development
- Break Silos of EP vs LM vs AP *
 - Empower Pathologist as member of translational research teams
- Organic growth and/or "Acquisition" new awards *
- **Diversify grant portfolio** into new areas of growing \$\$\$ support *
- Philanthropy the clinical face of the pathologist

Research Financial Ecosystem From Discovery to Market

Cummings J et al. Alzheimer's & Dementia (2018)

Financial Viability of Pathology Research Enterprise

Research Funding

- NIH
 2022: Biden admin proposes \$51.9 billion (21% increase)
- Other Governmental
 DOD/ VA / State
- Non-Governmental Foundations
- Philanthropy
- Industry contracts

Strategic Targeting of Research Funding

Fynding Lung Cancer Biomarkers

https://www.nia.nih.gov/research/blog/20 18/10/we-have-budget-fy-2019

Embrace Inevitable Change

- Inherent anxiety associated with change
- Pathology field has constantly adapted to health care environment changes (DRG, Managed Care..)
- Our specialty always thrives on assimilating scientific and technologic advances (EM, IHC, Lab automation..)

CHALLENGES

Impact on Pathology and Lab Medicine

- Unprecedented Demands on Expertise and Capital due to rapidly changing technological platforms
 Evolution of pathology work force \$\$ Investment in Capital Equipment
- 2) **Operational challenges** of Multidisciplinary **Integration** while maintaining "turf" advantage
- 3) Financial Viability in Constrained Health Care Economics

\$\$ Investment in Capital Equipment

NGS platforms *

- Gene Panels/WES
- Send out vs In House
 - Raw data: Research/Education
 - Expertise lead to a seat at the multiD table

Digital Pathology Platforms *

Genetic Alterations in Lung Adenocarcinoma

CancerSEEK

CANCER

Detection and localization of surgically resectable cancers with a multi-analyte blood test

Joshua D. Cohen,^{1,2,3,4,5} Lu Li,⁶ Yuxuan Wang,^{1,2,3,4} Christopher Thoburn,³ Bahman Afsari,⁷ Ludmila Danilova,⁷ Christopher Douville,^{1,2,3,4} Ammar A. Javed,⁸ Fay Wong,^{1,3,4} Austin Mattox,^{1,2,3,4} Ralph. H. Hruban,^{3,4,9} Christopher L. Wolfgang,⁸ Michael G. Goggins,^{3,4,9,10,11} Marco Dal Molin,⁴ Tian-Li Wang,^{3,9} Richard Roden,^{3,9} Alison P. Klein,^{3,4,12} Janine Ptak,^{1,2,3,4} Lisa Dobbyn,^{1,3,4} Joy Schaefer,^{1,3,4} Natalie Silliman,^{1,2,3,4} Maria Popoli,^{1,3,4} Joshua T. Vogelstein,¹³ James D. Browne,¹⁴ Robert E. Schoen,^{15,16} Randall E. Brand,¹⁵ Jeanne Tie,^{17,18,19,20} Peter Gibbs,^{17,18,19,20} Hui-Li Wong,¹⁷ Aaron S. Mansfield,²¹ Jin Jen,²² Samir M. Hanash,²³ Massimo Falconi,²⁴ Peter J. Allen,²⁵ Shibin Zhou,^{1,3,4} Chetan Bettegowda,^{1,3,4} Luis A. Diaz Jr.,^{1,3,4*} Cristian Tomasetti,^{3,6,7}† Kenneth W. Kinzler,^{1,3,4}† Bert Vogelstein,^{1,2,3,4}† Anne Marie Lennon,^{3,4,8,10,11}† Nickolas Papadopoulos^{1,3,4}†

Cohen, J.D., et al. Science, 2018

medicine

ARTICLES https://doi.org/10.1038/s41591-018-0134-3

Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab

David R. Gandara^{1,7*}, Sarah M. Paul^{2,7}, Marcin Kowanetz^{2,7}, Erica Schleifman^{2,7}, Wei Zou^{2,7}, Yan Li², Achim Rittmeyer³, Louis Fehrenbacher⁴, Geoff Otto⁵, Christine Malboeuf⁵, Daniel S. Lieber⁵, Doron Lipson⁵, Jacob Silterra⁵, Lukas Amler², Todd Riehl², Craig A. Cummings², Priti S. Hegde², Alan Sandler², Marcus Ballinger², David Fabrizio⁵, Tony Mok^{6*} and David S. Shames^{2*}

• Foundation ACT

Pancreas Multidisciplinary Cancer Team

The Multidisciplinary Pancreatic Cancer Team at Johns Hopkins is committed to providing the highest level of care to individuals suffering from pancreatic cancer and related conditions. Our team is comprised of many of the world's leading experts in pancreatic cancer.

Genetic Alterations in Lung Adenocarcinoma

Genetic Alterations in Lung Adenocarcinoma

Histopathology

Histopathology 2019, 74, 372–376.

Artificial intelligence—the third revolution in pathology

Manuel Salto-Tellez^{1,2,3} Perry Maxwell^{1,2} Peter Hamilton⁴

¹Precision Medicine Centre of Excellence, ²Centre for Cancer Research and Cell Biology, Queen's University Belfast, ³Tissue Pathology, Belfast Health and Social Care Trust, and ⁴Philips Digital Pathology, Belfast, UK

Will pathologists be simple facilitators and spectators of this third revolution? Will others in the medical profession drive adoption with pathologists (as appears to be the case in most areas of molecular diagnostics), or will we be the leading actors in the play?

Targetable Genetic Alterations

Dynamics of Tumor and Immune Responses during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer

Valsamo Anagnostou^{1,2}, Patrick M. Forde^{1,2}, James R. White¹, Noushin Niknafs¹, Carolyn Hruban¹, Jarushka Naidoo^{1,2}, Kristen Marrone^{1,2}, I.K. Ashok Sivakumar^{1,3,4}, Daniel C. Bruhm¹, Samuel Rosner⁵, Jillian Phallen¹, Alessandro Leal¹, Vilmos Adleff¹, Kellie N. Smith^{1,2}, Tricia R. Cottrell^{1,6}, Lamia Rhymee¹, Doreen N. Palsgrove¹, Christine L. Hann¹, Benjamin Levy¹, Josephine Feliciano¹, Christos Georgiades⁷, Franco Verde⁷, Peter Illei^{1,2,6}, Qing Kay Li^{1,6}, Edward Gabrielson^{1,6}, Malcolm V. Brock⁸, James M. Isbell⁹, Jennifer L. Sauter¹⁰, Janis Taube^{1,2,6}, Robert B. Scharpf¹, Rachel Karchin^{1,3}, Drew M. Pardoll^{1,2}, Jamie E. Chaft¹¹, Matthew D. Hellmann¹¹, Julie R. Brahmer^{1,2}, and Victor E. Velculescu^{1,2,3}

Check for updates

Early Noninvasive Detection of Response to Targeted Therapy in Non-Small Cell Lung Cancer 😰

Jillian Phallen¹, Alessandro Leal¹, Brian D. Woodward², Patrick M. Forde¹, Jarushka Naidoo¹, Kristen A. Marrone¹, Julie R. Brahmer¹, Jacob Fiksel¹, Jamie E. Medina¹, Stephen Cristiano¹, Doreen N. Palsgrove¹, Christopher D. Gocke¹, Daniel C. Bruhm¹, Parissa Keshavarzian², Vilmos Adleff¹, Elizabeth Weihe², Valsamo Anagnostou¹, Robert B. Scharpf¹, Victor E. Velculescu¹, and Hatim Husain²

Phallen J et al Cancer Res 2019

PapSEEK

- 18 genes and Ploidy (Fast-Seq)
- Pap vs Tao Brush
 - Endometrial Ca: 81% vs 93% sensitivity
 - Ovarian Ca: 33% vs 45% sensitivity Specificity 99% vs 100%
- Plasma ctDNA
 - Ovarian Ca: 43% sensitivity
 - 63% sensitivity when combined with
 Pap Brush

Wang Y., et al. Sci Trans Med, 2018

Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA

Fiona S Togneri¹, Douglas G Ward², Joseph M Foster³, Adam J Devall², Paula Wojtowicz¹, Sofia Alyas¹, Fabiana Ramos Vasques¹, Assa Oumie³, Nicholas D James⁴, KK Cheng⁵, Maurice P Zeegers⁶, Nayneeta Deshmukh², Brendan O'Sullivan⁷, Philippe Taniere⁷, Karen G Spink³, Dominic J McMullan¹, Mike Griffiths¹ and Richard T Bryan^{*,2}

European Journal of Human Genetics 2016

Genomic Alterations in Liquid Biopsies from Patients with Bladder Cancer

Karin Birkenkamp-Demtröder^{*a*,†,*}, Iver Nordentoft^{*a*,†}, Emil Christensen^{*a*}, Søren Høyer^{*b*}, Thomas Reinert^{*a*}, Søren Vang^{*a*}, Michael Borre^{*c*}, Mads Agerbæk^{*d*}, Jørgen Bjerggaard Jensen^{*c*}, Torben F. Ørntoft^{*a*}, Lars Dyrskjøt^{*a*,**}

EUROPEAN UROLOGY, 2016

Liquid Biopsy Analysis of *FGFR3* and *PIK3CA* Hotspot Mutations for Disease Surveillance in Bladder Cancer

Emil Christensen^a, Karin Birkenkamp-Demtröder^a, Iver Nordentoft^a, Søren Høyer^b, Kirstin van der Keur^c, Kim van Kessel^c, Ellen Zwarthoff^c, Mads Agerbæk^d, Torben Falck Ørntoft^a, Jørgen Bjerggaard Jensen^e, Lars Dyrskjøt^{a,*}

EUROPEAN UROLOGY, 2017

First-Line Nivolumab Plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers

Neal Ready, MD, PhD¹; Matthew D. Hellmann, MD²; Mark M. Awad, MD, PhD³; Gregory A. Otterson, MD⁴; Martin Gutierrez, MD⁵; Justin F. Gainor, MD⁶; Hossein Borghaei, DO⁷; Jacques Jolivet, MD⁸; Leora Horn, MD⁹; Mihaela Mates, MD¹⁰; Julie Brahmer, MD¹¹; Ian Rabinowitz, MD¹²; Pavan S. Reddy, MD¹³; Jason Chesney, MD, PhD¹⁴; James Orcutt, MD¹⁵; David R. Spigel, MD¹⁶; Martin Reck, PhD¹⁷; Kenneth John O'Byrne, MD¹⁸; Luis Paz-Ares, MD, PhD¹⁹; Wenhua Hu, PhD²⁰; Kim Zerba, PhD²⁰; Xuemei Li, MD²⁰; Brian Lestini, MD, PhD²⁰; William J. Geese, PhD²⁰; Joseph D. Szustakowski, PhD²⁰; George Green, PhD²⁰; Han Chang, PhD²⁰; and Suresh S. Ramalingam, MD²¹

Ready N et al JCO 2019

Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater

Martin Reck, MD, PhD¹; Delvys Rodríguez-Abreu, MD²; Andrew G. Robinson, MD³; Rina Hui, MBBS, PhD⁴; Tibor Csőszi, MD⁵; Andrea Fülöp, MD⁶; Maya Gottfried, MD⁷; Nir Peled, MD, PhD⁸; Ali Tafreshi, MD⁹; Sinead Cuffe, MD¹⁰; Mary O'Brien, MD¹¹; Suman Rao, MD¹²; Katsuyuki Hotta, MD, PhD¹³; Kristel Vandormael, MSc¹⁴; Antonio Riccio, PhD¹⁵; Jing Yang, PhD¹⁵; M. Catherine Pietanza, MD¹⁵; and Julie R. Brahmer, MD¹⁶

Reck M et al JCO 2019

В

Subgroup	HR (95% CI)	
Overall (N = 305)	0.63 (0.47 to 0.86)	
Age, years		
< 65 (n = 141)	0.60 (0.38 to 0.96)	
≥ 65 (n = 164)	0.64 (0.42 to 0.98)	
Sex		
Male (n = 187)	0.54 (0.36 to 0.79)	i
Female (n = 118)	0.95 (0.56 to 1.62)	÷
Enrollment region		
East Asia (n = 40)	0.35 (0.12 to 1.01)	
Non-East Asia (n = 265)	0.67 (0.49 to 0.93)	
ECOG PS		
0 (n = 107)	0.78 (0.44 to 1.37)	
1 (n = 197)	0.56 (0.39 to 0.81)	
Histology		
Squamous $(n = 56)$	0.73 (0.38 to 1.39)	
Nonsquamous (n = 249)	0.58 (0.41 to 0.83)	
Smoking status		
Current (n = 65)	0.81 (0.41 to 1.60)	
Former (n = 216)	0.59 (0.41 to 0.85)	
Never $(n = 24)$	0.90 (0.11 to 7.59)	
Treated brain metastases		
Yes (n = 28)	0.73 (0.20 to 2.62)	
No (n = 277)	0.64 (0.46 to 0.88)	
Chemotherapy regimen		Ī
With pemetrexed $(n = 199)$	0.66 (0.45 to 0.97)	
Without pemetrexed $(n = 106)$	0.56 (0.33 to 0.95)	
	,	
		······
		0.1 1 10
		Pembrolizumab better Chemotherapy better
		HR (95% CI)
		. ,

Financial Viability "Precision" Pathology Service

Measurable Impact on Outcome

Genomic Data Integration in patient management tools Pharmacogenomics LIS/EMR

Big Data in Health Care

2/3 of medical records data is Lab Med Tests Data Pathologists are positioned to be the "Rock stars" of Big Data !
CHALLENGES

Impact on Pathology and Lab Medicine

- Unprecedented Demands on Expertise and Capital due to rapidly changing technological platforms
 Evolution and adaptation of pathology work force
 \$\$ Investment
- 2) **Operational challenges** of Multidisciplinary **Integration** while maintaining "turf" advantage

3) Financial Viability in Constrained Health Care Economics

Next Gen Pathologist

Indispensable Member of Integrated Healthcare Delivery Team

- Pathologist of The Future is a <u>vital</u> player in patient management team Molecular multidisciplinary tumor boards Cell Therapy (CAR-T Cell)
- Elevating "Physician Profile" through patient exposure & communication CAP "Meet your Pathologist" efforts AMP gene patent victory
- Advocacy for protecting our deservedly earned "Expertise Turf" FDA LDT vs Companion Test; DTC; MOOP...

Research Financial Ecosystem From Discovery to Market

Cummings J et al. Alzheimer's & Dementia (2018)

Financial Viability of Pathology Research Enterprise

Trials Registered in ClinicalTrials.gov From 2006 -2014

		Funding Agency, No. (%) ^c			
	Total No. of Trials ^b	National Institutes of Health	Industry	Other US Federal Agency	All Others
Year of trial start					
2006	9321	1376 (14.8)	4585 (49.2)	263 (2.8)	3240 (34.8)
2007	11 122	1247 (11.2)	5462 (49.1)	275 (2.5)	4284 (38.5)
2008	13 942	1333 (9.6)	7046 (50.5)	327 (2.3)	5385 (38.6)
2009	13712	1162 (8.5)	6390 (46.6)	327 (2.4)	5963 (43.5)
2010	13816	1113 (8.1)	5923 (42.9)	309 (2.2)	6595 (47.7)
2011	14 202	1057 (7.4)	5839 (41.1)	320 (2.3)	7127 (50.2)
2012	15 468	1015 (6.6)	5738 (37.1)	344 (2.2)	8507 (55.0)
2013	16 217	1074 (6.6)	5355 (33.0)	363 (2.2)	9566 (59.0)
2014	18 400	1048 (5.7)	6550 (35.6)	339 (1.8)	10 597 (57.6)
% Difference (95% CI) ^{d,e}		-9.1 (-9.9 to -8.3)	-13.6 (-14.8 to -12.3)	-1.0 (-1.4 to -0.6)	22.8 (21.6 to 24.0)
Absolute difference, No. (%) ^e	9079 (97.4)	-328 (-23.8)	1965 (42.9)	76 (28.9)	7357 (227.1)

JAMA December 15, 2015

Dynamics of Tumor and Immune Responses during Immune Checkpoint Blockade in Non-Small Cell Lung Cancer

Valsamo Anagnostou^{1,2}, Patrick M. Forde^{1,2}, James R. White¹, Noushin Niknafs¹, Carolyn Hruban¹, Jarushka Naidoo^{1,2}, Kristen Marrone^{1,2}, I.K. Ashok Sivakumar^{1,3,4}, Daniel C. Bruhm¹, Samuel Rosner⁵, Jillian Phallen¹, Alessandro Leal¹, Vilmos Adleff¹, Kellie N. Smith^{1,2}, Tricia R. Cottrell^{1,6}, Lamia Rhymee¹, Doreen N. Palsgrove¹, Christine L. Hann¹, Benjamin Levy¹, Josephine Feliciano¹, Christos Georgiades⁷, Franco Verde⁷, Peter Illei^{1,2,6}, Qing Kay Li^{1,6}, Edward Gabrielson^{1,6}, Malcolm V. Brock⁸, James M. Isbell⁹, Jennifer L. Sauter¹⁰, Janis Taube^{1,2,6}, Robert B. Scharpf¹, Rachel Karchin^{1,3}, Drew M. Pardoll^{1,2}, Jamie E. Chaft¹¹, Matthew D. Hellmann¹¹, Julie R. Brahmer^{1,2}, and Victor E. Velculescu^{1,2,3}

Check for updates

Disruptive Forces in Healthcare & Pathology

Technological/Computational

- Genomic Technology and Bioinformatics Advances
- Computational Advances: AI, Machine Learning, Digital Pathology
- Health Care Information Technology/Big Data

Financial

- Value Based Reimbursement replacing Fee For Service
- Constrained Health Care Economic echo system Clinical and Research \$\$\$

Opportunities "Precision" Pathology Service

- Less than two decades following The Human Genome Project, the revolutionary progress in Human Genomics is reshaping our approach to Diagnosis, Prognostics and Therapy
- It is estimated that 5-10% of all laboratory tests are DNA/RNA based analyses

Lung mass

p40

p63

TTF-1

Poorly differentiated adenocarcinoma (TTF-1+, p63+ and p40 negative)

The Future is even more PERSONAL !

CHALLENGES Impact on Pathology and Lab Medicine

- Unprecedented Demands on Expertise and Capital due to rapidly changing technological platforms Evolution and adaptation of pathology work force \$\$ Investment
- Operational challenges of Multidisciplinary Integration while maintaining "turf" advantage
- Financial Viability in Constrained Health Care Economics

CHALLENGES Impact on Pathology and Lab Medicine

- Unprecedented Demands on Expertise and Capital due to rapidly changing technological platforms Evolution and adaptation of pathology work force \$\$ Investment
- Operational challenges of Multidisciplinary Integration while maintaining "turf" advantage
- Financial Viability in Constrained Health Care Economics

CHALLENGES Impact on Pathology and Lab Medicine

- Unprecedented Demands on Expertise and Capital due to rapidly changing technological platforms Evolution and adaptation of pathology work force \$\$ Investment
- Operational challenges of Multidisciplinary Integration while maintaining "turf" advantage
- Financial Viability in Constrained Health Care Economics

medicine

Circulating mutant DNA to assess tumor dynamics

Frank Diehl^{1,5}, Kerstin Schmidt^{1,5}, Michael A Choti², Katharine Romans¹, Steven Goodman³, Meng Li¹, Katherine Thornton¹, Nishant Agrawal¹, Lori Sokoll⁴, Steve A Szabo¹, Kenneth W Kinzler¹, Bert Vogelstein¹ & Luis A Diaz Jr¹

Plasma ctDNA Rx Monitoring

NEXT GENERATION SEQUENCING (NGS)

NANOTECHNOLOGY BEAMs & PARES

Luis Diaz MD PhD

BEAMing

medicine

Circulating mutant DNA to assess tumor dynamics

Frank Diehl^{1,5}, Kerstin Schmidt^{1,5}, Michael A Choti², Katharine Romans¹, Steven Goodman³, Meng Li¹, Katherine Thornton¹, Nishant Agrawal¹, Lori Sokoll⁴, Steve A Szabo¹, Kenneth W Kinzler¹, Bert Vogelstein¹ & Luis A Diaz Jr¹

Water-in-Oil Emulsion with 1 µm Microbeads

Aqueous compartments:

3-10 μm diameter 14-380 fl volume

Aqueous Phase:

~10 Billion bubbles/ ml

Diehl et al. Nat. Methods 2006

Luis Diaz MD PhD

Circulating mutant DNA to assess tumor dynamics

Frank Diehl^{1,5}, Kerstin Schmidt^{1,5}, Michael A Choti², Katharine Romans¹, Steven Goodman³, Meng Li¹, Katherine Thornton¹, Nishant Agrawal¹, Lori Sokoll⁴, Steve A Szabo¹, Kenneth W Kinzler¹, Bert Vogelstein¹ & Luis A Diaz Jr¹

 Tumor Sequencing for APC,TP53, KRAS and PIK3CA ⇒ ≥1 mutation in each CRCa sample
DNA from stool/plasma samples assessed for identified mutations by "BEAMing Technology"

Digital PCR

Luis Diaz MD PhD

EGFR Mutations Associated with Sensitivity

Exon 18	Exon 19	Exon 20	Exon 21
G719C G719S G719A V689M N700D E709K/Q S720P	$\begin{array}{l} \Delta \textbf{E746-A750} \\ \Delta \textbf{E746-T751} \\ \Delta \textbf{E746-A750} (ins RP) \\ \Delta \textbf{E746-T751} (ins A/l) \\ \Delta \textbf{E746-T751} (ins VA) \\ \Delta \textbf{E746-S752} (ins A/V) \\ \Delta \textbf{L747-E749} (A750P) \\ \Delta \textbf{L747-E750} (ins P) \\ \Delta \textbf{L747-T751} \\ \Delta \textbf{L747-T751} (ins P/S) \\ \Delta \textbf{L747-S752} \\ \Delta \textbf{L747-S752} \\ \Delta \textbf{L747-S752} (\textbf{E746V}) \\ \Delta \textbf{L747-S752} (ins Q) \\ \Delta \textbf{L747-P753} (ins S) \\ \Delta \textbf{L752-I759} \end{array}$	V765A T783A <1%	L858R (40%-45%) N826S A839T K846R L861Q G863D

EGFR and K-ras Mutation in NSCLC Carcinoma

	EGFR mutation	EGRF wild type	K-ras mutation	K-ras wild type
AdenoCA*	20%	80%	22%	78%
Non-AdenoCA	13%	87%	5%	95%
Female	18%	82%	14%	86%
Male	16%	84%	15%	85%
Smokers [#]	14%	86%	16%	84%
Never smoker	28%	72%	11%	89%
Asian	38%	62%	0%	100%
Non-Asian	15%	85%	16%	84%

NCICC Trials Group study BR.21 J Clin Oncol 26:4268-4275, 2008.

UroSEEK in Non-Invasive Bladder Cancer Tissue

Eich et al. Mod Pathol 2019

UroSEEK in Invasive Bladder Cancer Tissue

Eich et al. Mod Pathol 2019

Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non–small-cell lung cancer: KEYNOTE-021 cohorts D and H

Matthew A. Gubens^{a,*}, Lecia V. Sequist^b, James P. Stevenson^c, Steven F. Powell^d, Liza C. Villaruz^e, Shirish M. Gadgeel^f, Corey J. Langer^g, Amita Patnaik^h, Hossein Borghaeiⁱ, Shadia I. Jalal^j, Joseph Fiore^{k,1}, Sanatan Saraf^k, Harry Raftopoulos^{k,2}, Leena Gandhi^{1,m,3}

Gubens MA et al Lung Cancer 2019

