

WHO 2022 Update on the Classifications of Urinary Tract Neoplasms

George J. Netto, M.D.

Professor and Chair of Pathology

University of Alabama at Birmingham

WHO 2022 Update on the Classifications of Urinary Tract Neoplasms

I have the following financial relationships to disclose:

TERT Promoter Mutations in Urothelial Neoplasia Patents: (US201660208340A1) (PCT/US2014/051808)

UroSEEK; CancerSEEK; PapSEEK

- Methods and Materials for Assessing and Treating Cancer Patents: (US16/250,703) (PCT/US2018/045669)
- Financial Interest in "Thrive Early Detection Corp" and "Exact Sciences Inc"

Genentech Advisory Pathology Board

I will not discuss off label use and/or investigational use in my presentation

- WHO 5th edition series structural reorganization
- Refinements of terminology and classification
- Precursor lesions (Dysplasia, UPUMP)
- Grading / Staging/ Urine Cytology
- Intrinsic Molecular Subtypes of UC

- WHO 5th edition series structural reorganization
- Refinements of terminology and classification
- Precursor lesions (Dysplasia, UPUMP)
- Grading / Staging/ Urine Cytology
- Intrinsic Molecular Subtypes of UC

Urothelial tumours		Neuroendocrine tumours	
Infiltrating urothelial carcinoma	8120/3	Small cell neuroendocrine carcinoma	8041/3
Nested, including large nested	0.10,0	Large cell neuroendocrine carcinoma	8013/3
Microcystic		Well-differentiated neuroendocrine tumour	8240/3
Micropapillary	8131/3	Paraganglioma	8693/1
Lymphoepithelioma-like	8082/3	T dragarigilorna	0000/1
Plasmacytoid / signet ring cell / diffuse	0002/0	Melanocytic tumours	
Sarcomatoid	8122/3	Malignant melanoma	8720/3
Giant cell	8031/3	Naevus	8720/0
Poorly differentiated	8020/3	Melanosis	0120,0
Lipid-rich	0020,0	Modification	
Clear cell		Mesenchymal tumours	
		Rhabdomyosarcoma	8900/3
Non-invasive urothelial neoplasms		Leiomyosarcoma	8890/3
Urothelial carcinoma in situ	8120/2	Angiosarcoma	9120/3
Non-invasive papillary urothelial	0.10,1	Inflammatory myofibroblastic tumour	8825/1
carcinoma, low-grade	8130/2	Perivascular epithelioid cell tumour	0020, .
Non-invasive papillary urothelial	0.00,=	Benign	8714/0
carcinoma, high-grade	8130/2	Malignant	8714/3
Papillary urothelial neoplasm of	0.00,=	Solitary fibrous tumour	8815/1
low malignant potential	8130/1	Leiomyoma	8890/0
Urothelial papilloma	8120/0	Haemangioma	9120/0
Inverted urothelial papilloma	8121/0	Granular cell tumour	9580/0
Urothelial proliferation of uncertain		Neurofibroma	9540/0
malignant potential			
Urothelial dysplasia		Urothelial tract haematopoietic and	
		lymphoid tumours	
Squamous cell neoplasms			
Pure squamous cell carcinoma	8070/3	Miscellaneous tumours	
Verrucous carcinoma	8051/3	Carcinoma of Skene, Cowper, and Littre glands	8140/3
Squamous cell papilloma	8052/0	Metastatic tumours and tumours extending from other organs	
Glandular neoplasms		Epithelial tumours of the upper urinary tract	
Adenocarcinoma, NOS	8140/3	Tumours arising in a bladder diverticulum	
Enteric	8144/3	Urothelial tumours of the urethra	
Mucinous	8480/3		
Mixed	8140/3		
Villous adenoma	8261/0	The morphology codes are from the International Classification	of Diseases
		for Oncology (ICD-O) (917A). Behaviour is coded /0 for benign	
Urachal carcinoma	8010/3	/1 for unspecified, borderline, or uncertain behaviour; /2 for car	
		situ and grade III intraepithelial neoplasia; and /3 for malignant	
Tumours of Müllerian type		The classification is modified from the previous WHO classifica	tion {756A},
Clear cell carcinoma	8310/3	taking into account changes in our understanding of these lesion	ons.
Endometrioid carcinoma	8380/3		

Urothelial Tumours
Non-Invasive Urothelial Neoplasia
Urothelial papilloma
Inverted urothelial papilloma
Papillary urothelial neoplasm of low malignant potential
Non-invasive papillary urothelial carcinoma, low-grade
Non-invasive papillary urothelial carcinoma, high-grade
Urothelial carcinoma in situ
Invasive Urothelial Neoplasia
Invasive urothelial carcinoma
Squamous cell neoplasms
Urothelial squamous cell papilloma
Verrucous carcinoma of the bladder
Pure urothelial squamous cell carcinoma
Glandular neoplasms
Adenomas
Villous adenoma
Adenocarcinomas
Adenocarcinoma NOS
Urachal and diverticular neoplasms
Urachal carcinoma
Diverticular carcinoma
Urethral neoplasms
Urethral accessory gland carcinomas
Littre gland carcinoma of the urethra
Skene gland carcinoma of the urethra
Cowper gland carcinoma of the urethra
Tumours of Mullerian type
Clear cell adenocarcinoma
Endometrioid carcinoma

- WHO 5th edition series structural reorganization
- Refinements of terminology and classification
- Precursor lesions (Dysplasia, UPUMP)
- Grading / Staging/ Urine Cytology
- Intrinsic Molecular Subtypes of UC

Terminology scheme across the WHO 5th edition:

- The term "subtype" to replace "variant" for a distinct clinical or morphologic category within a tumour type
- The term "variant" is reserved for genomic rather than morphologic alterations

Subtypes of Urothelial Carcinoma are morphologically distinct and have prognostic significance (management implications)

WHO URO 4

Urothelial tumours

Infiltrating Urothelial Carcinoma

Histologic Variants

Nested, including large nested

Microcystic

Micropapillary

Lymphoepithelioma-like

Plasmacytoid/signet ring cell/diffuse

Sarcomatoid

Giant cell

Poorly differentiated

Lipid rich

Clear cell

WHO URO 5

Urothelial tumours

Invasive Urothelial Carcinoma

Histologic Subtypes of Urothelial Carcinoma

Nested

→ Large Nested

Tubular and Microcystic

Micropapillary

Lymphoepithelioma-like

Plasmacytoid

Sarcomatoid

Giant cell

Poorly differentiated

Lipid rich

Clear cell (Glycogen Rich)

Urothelial Carcinoma with Divergent Differentiation

UC with Squamous Differentiation

UC with Glandular Differentiation

UC with Trophoblatic Differentiation

UC with Mullerian Differentiation (Clear Cell Adenocarcinoma)

- A single Urothelial Carcinoma lesion can display admixture of conventional urothelial, histologic subtypes, and areas of divergent differentiation
- A listing and attempt to quantify the various components is required

Histologic Subtypes of Invasive Urothelial Carcinoma

Nested

Tubular and Microcystic

Large Nested

Histologic Subtypes of Invasive Urothelial Carcinoma Nested

"Cancer Resembling Von Brunn Nests"

- Talbert ML, Young RH. Am J Surg Pathol 1989;13:374
 Carcinomas of the urinary bladder with deceptively benign-appearing foci: a report of three cases.
- Murphy WM, Deana DG. Mod Pathol 1992;5:240-3
 The nested variant of transitional cell carcinoma: a neoplasm resembling proliferation of Brunn's nests.

Histologic Subtypes of Invasive Urothelial Carcinoma Nested

RARE less than 1% of invasive bladder carcinomas

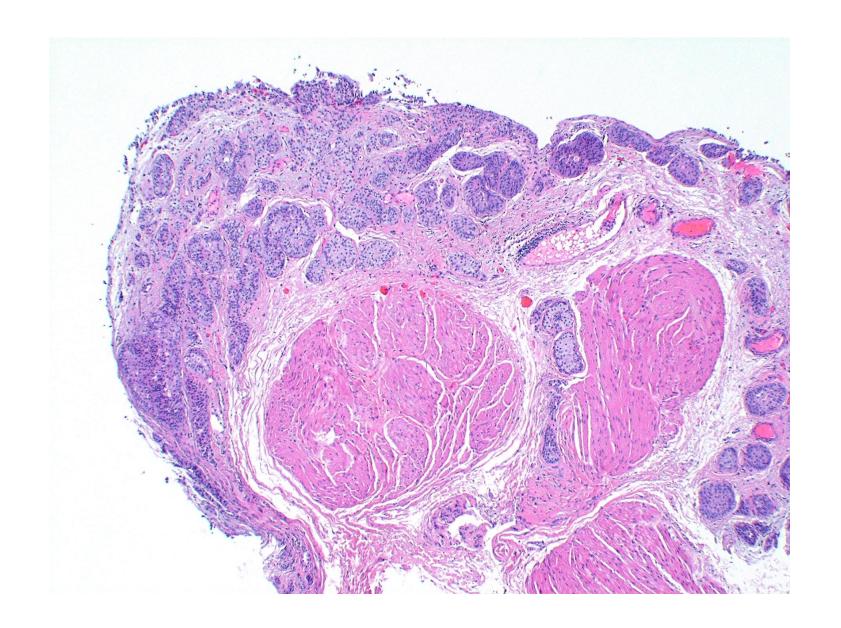
Location

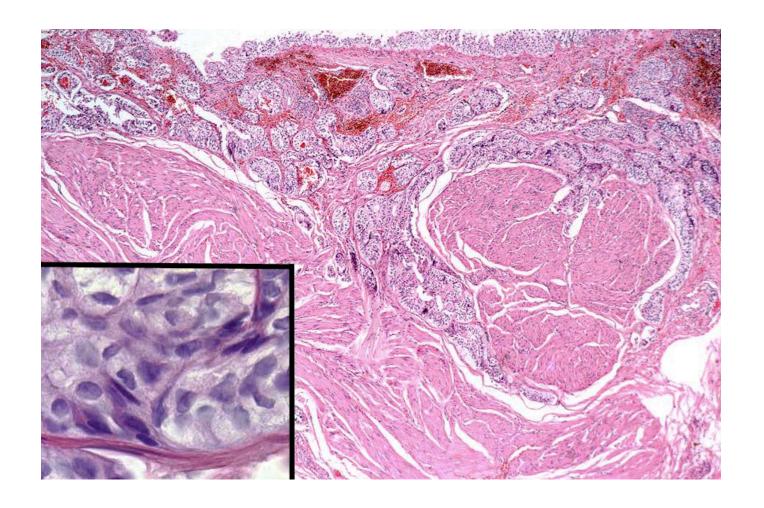
- Anywhere in the bladder
- Rare in upper tract

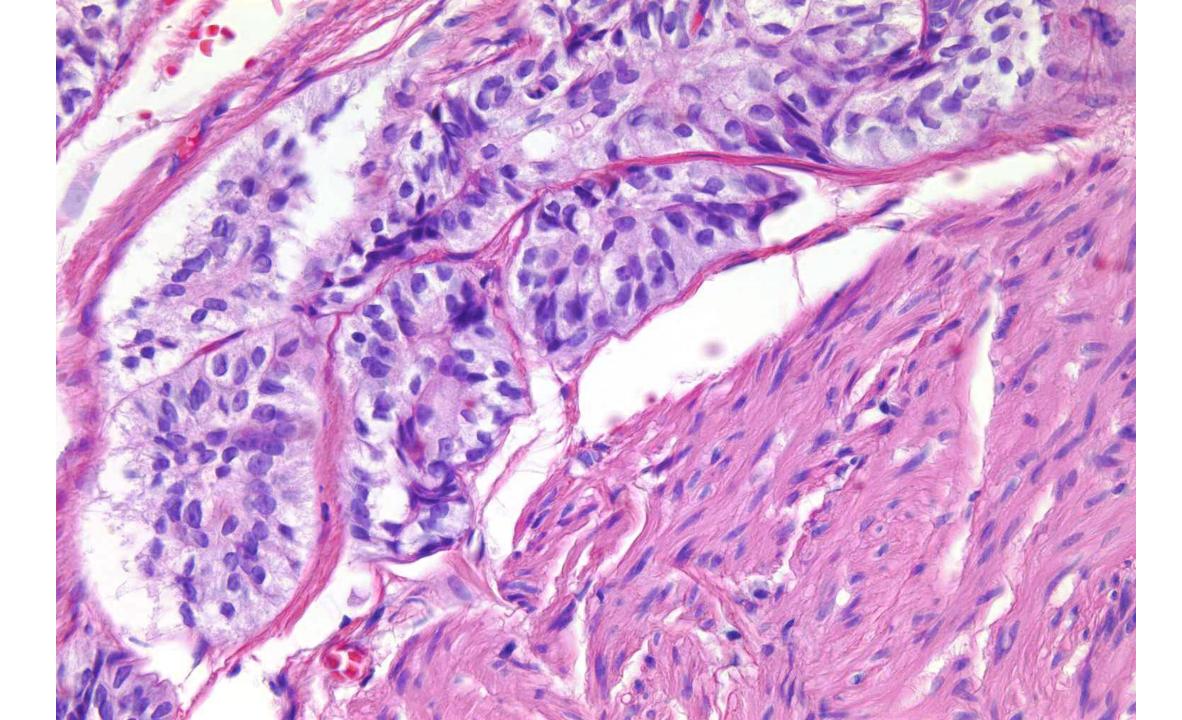
Cystoscopy

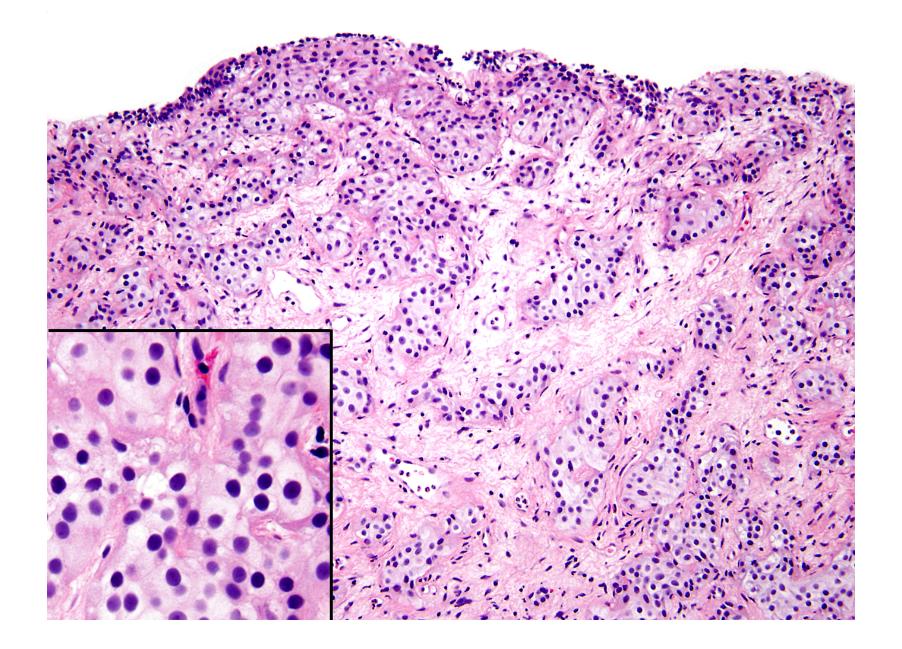
- Widely variable appearance: flat tumor, papillary tumor, submucosal "bump"
- Tumor size: 1-8 cm.

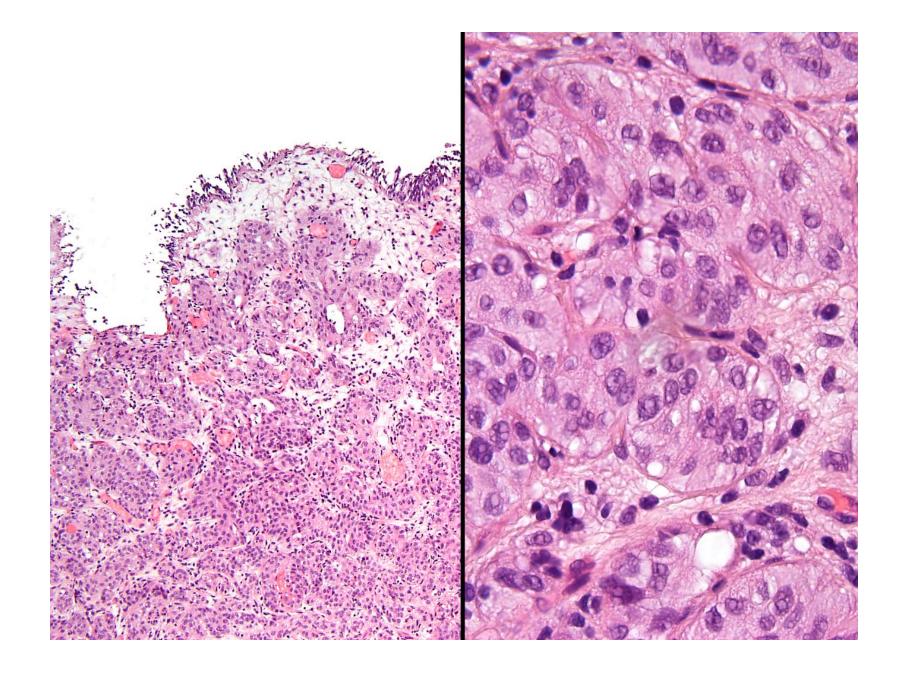
UC Nested Subtype Prognosis

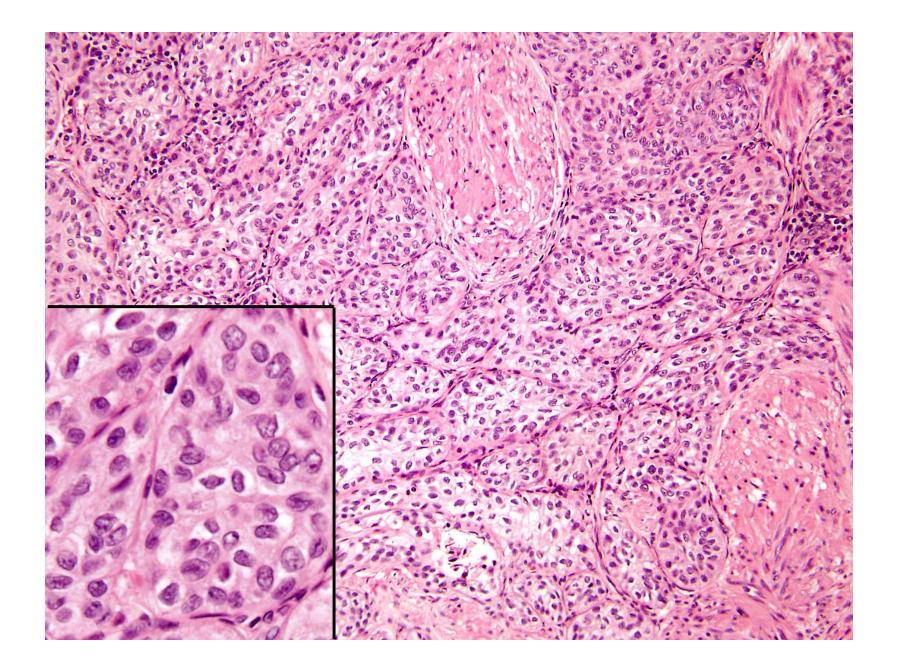

Clinical course generally aggressive

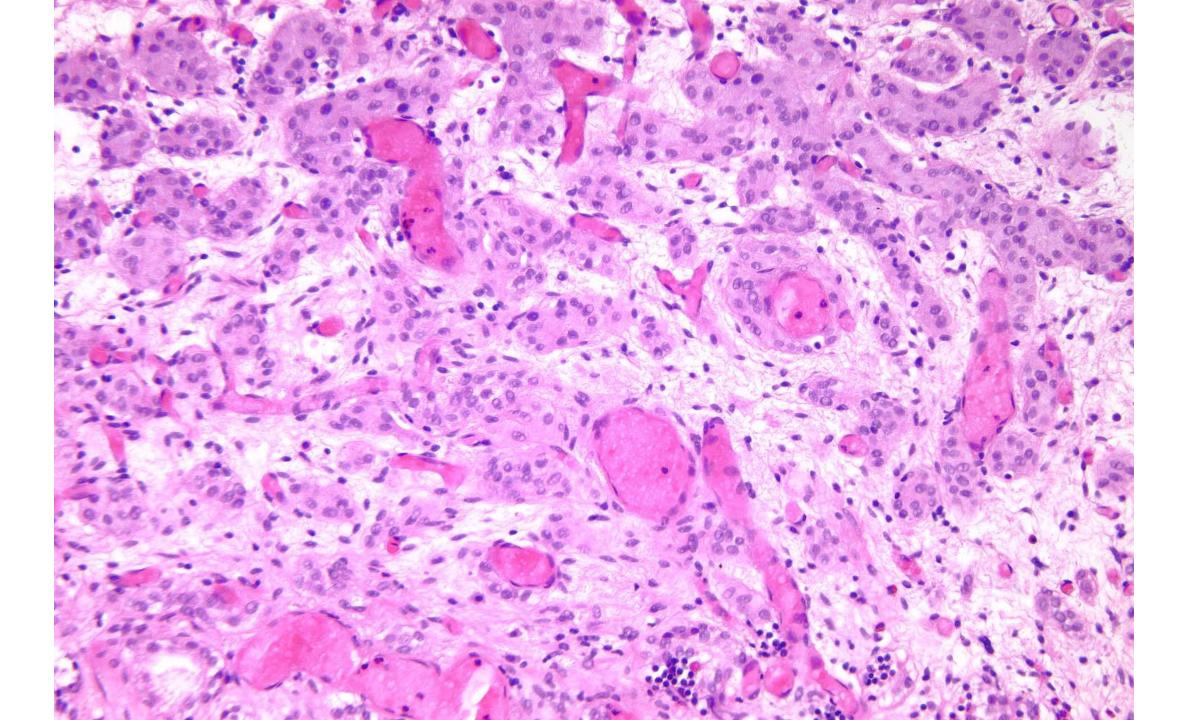

Drew et al. Mod Pathol 1996:

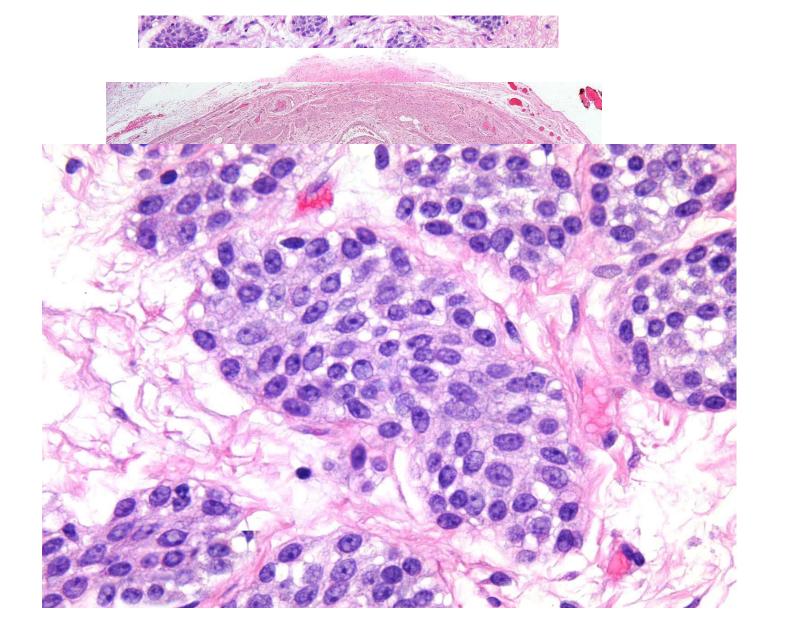

- Review of 24 cases, 60% show aggressive behavior, mortality rates similar to high grade UrCa
- Only 3/12 (25%) nested variant alive without disease (DFS) at 16 months follow-up


UC Nested Subtype

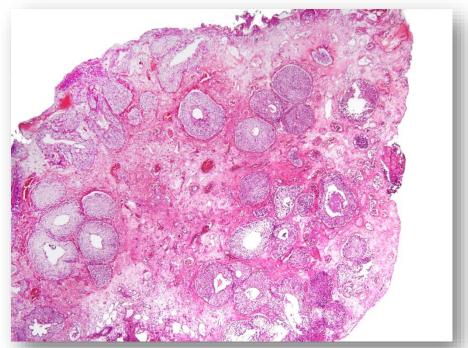

- Small closely packed nests of epithelial cells irregularly infiltrating lamina propria, at times anastomosing confluent nests
- Can be mixed with microcystic, tubular, and trabecular structures
- Histologically Difficult to Diagnose
 - Very bland cells with only focal moderate atypia
 - Overlying urothelium may be normal
 - Deep irregular infiltrative pattern
 - Identify muscularis propria invasion



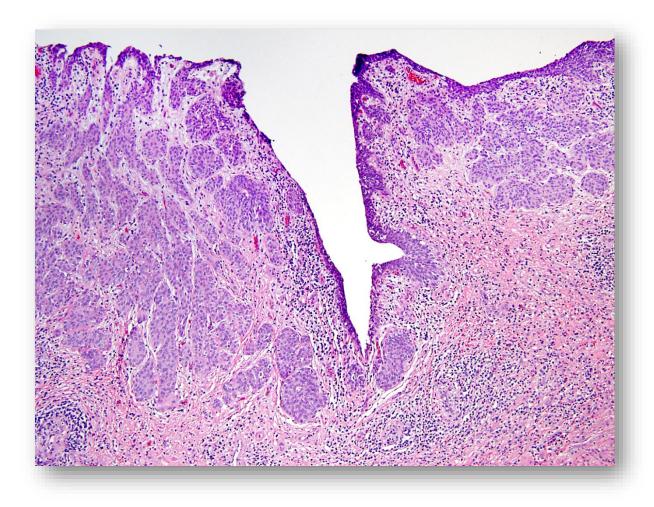




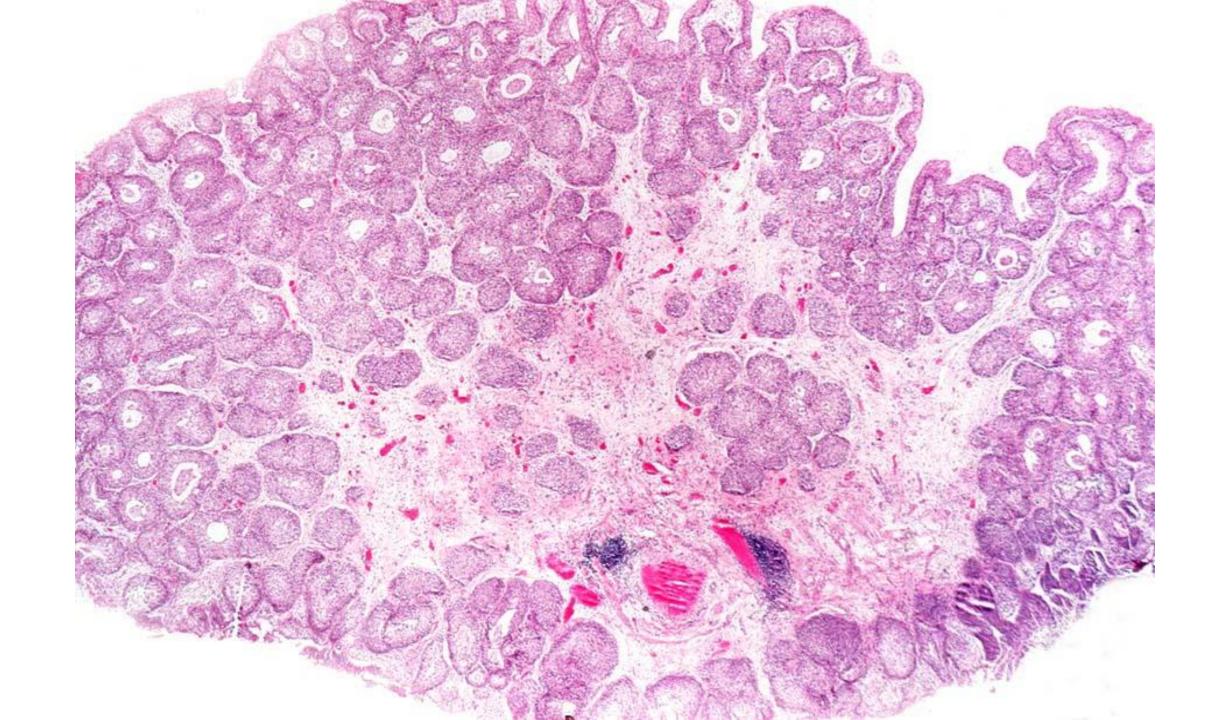
Urothelial Nested Architecture DDX

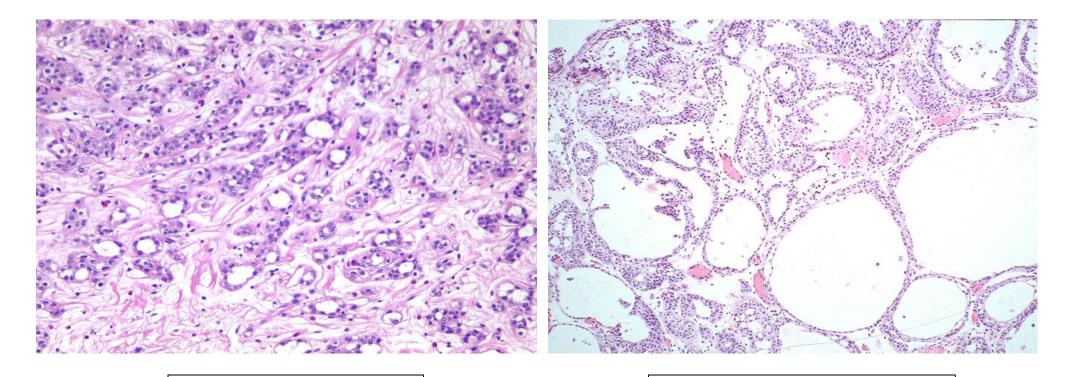


UC Nested Subtype

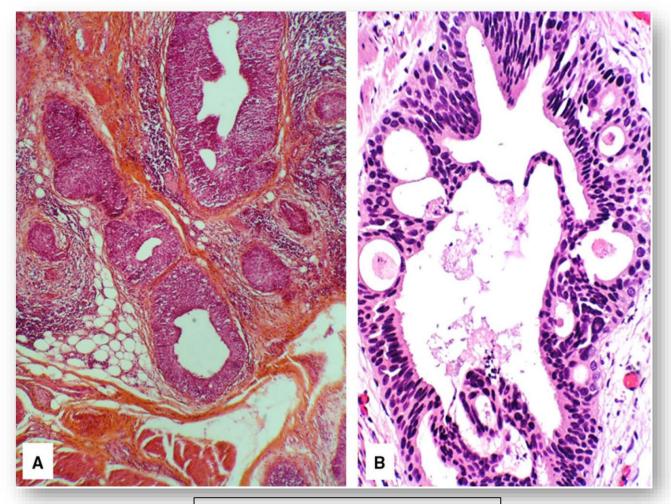

DDx

Proliferation of Von Brunn Nests


- Deep irregular infiltrative pattern
- Identify muscularis propria invasion
- *TERT* promoter mutation



Urinary Bladder Florid Proliferation of Von Brunn Nests


Urothelial CarcinomaTubular and Microcystic Subtypes

- Closely related to their nested counterpart
- Bland cells line small tubular or microcystic structures
- DDx Cystitis Cystica
 Like nested subtype, deep irregular infiltration & involvement
 of muscularis propria are clues
- Urothelial markers typically positive (GATA3 or p63)

Tubular Subtype

Microcystic Subtype

Microcystic Subtype

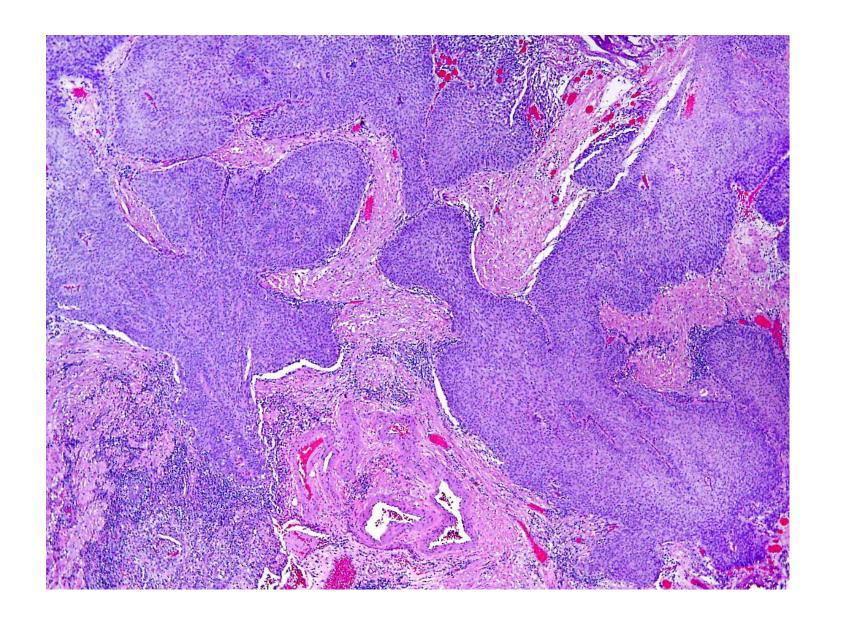
Lopez Beltran et al.: Histopathology. 2019

Large Nested Variant of Urothelial Carcinoma: 23 Cases Mimicking von Brunn Nests and Inverted Growth Pattern of Noninvasive Papillary Urothelial Carcinoma

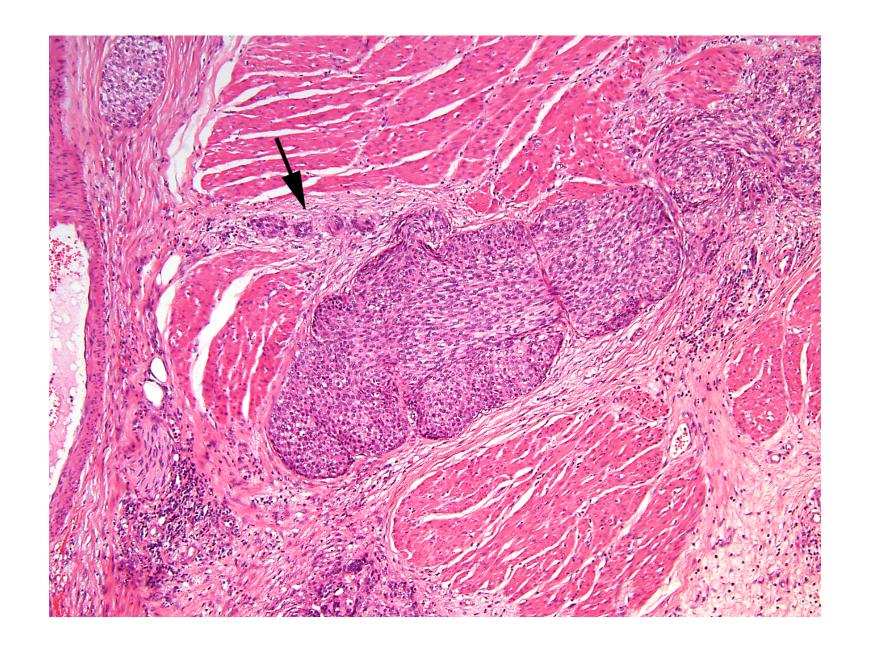
Roni Cox, MD* and Jonathan I. Epstein, MD*†‡ Am J Surg Pathol 2011

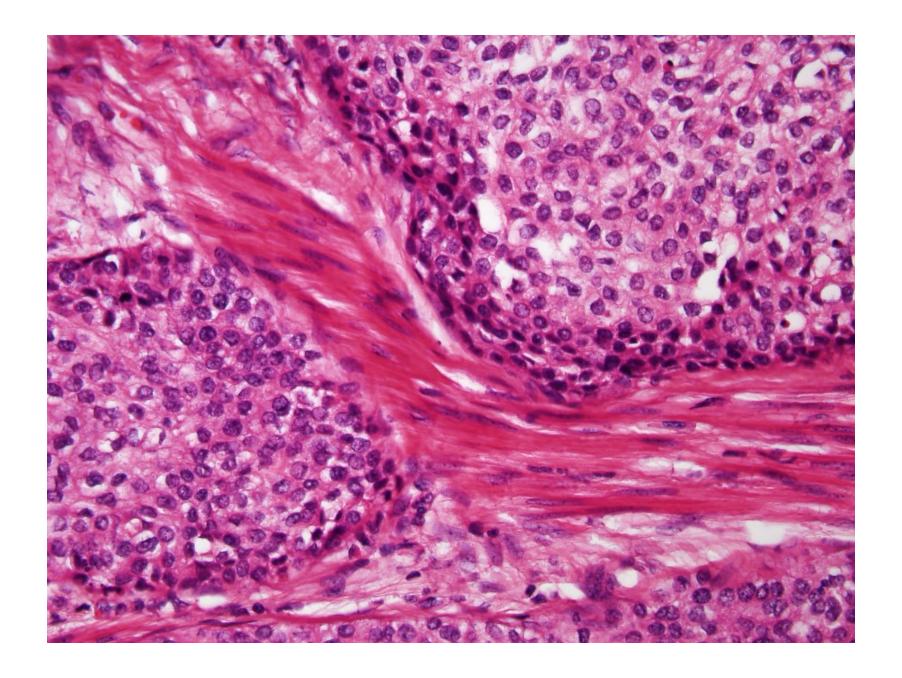
Histopathology

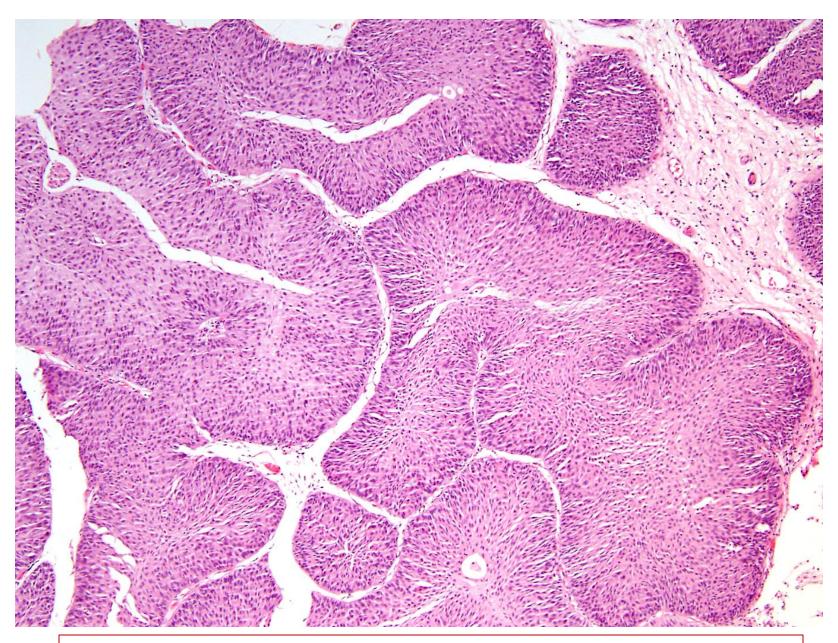
Histopathology 2017, 71, 703-710. DOI: 10.1111/his.13280


Large nested variant of urothelial carcinoma: a clinicopathological study of 36 cases


Eva Compérat, ¹ Jesse K McKenney, ² Arndt Hartmann, ³ Ondrej Hes, ⁴ Simone Bertz, ³ Justine Varinot ¹ & Fadi Brimo ⁵


Large nested variant of urothelial carcinoma: a clinicopathological study of 36 cases


Eva Compérat, ¹ Jesse K McKenney, ² Arndt Hartmann, ³ Ondrej Hes, ⁴ Simone Bertz, ³ Justine Varinot ¹ & Fadi Brimo ⁵


- Bland cytological appearance
- Deceptive pattern of invasion (DDX Inverted)
- 58% extravesical disease (≥pT3 and/or ≥pN1); Mixed more advanced compared to pure large nested?
- 21% recurrence/metastasis
- 24% died of disease (mean 21.7 months)
- IHC same as conventional & nested UrCa

Non-invasive LG papillary urothelial carcinoma with **inverted pattern**

WHO Classification of the Urinary and Male Genital Tumours 5th edition series

- WHO 5th edition series structural reorganization
- Refinements of terminology and classification
- Precursor lesions (Dysplasia, UPUMP)
- Grading / Staging/ Urine Cytology
- Advances in molecular pathways (targets of therapy)

WHO Classification of the Urinary and Male Genital Tumours 4th edition series

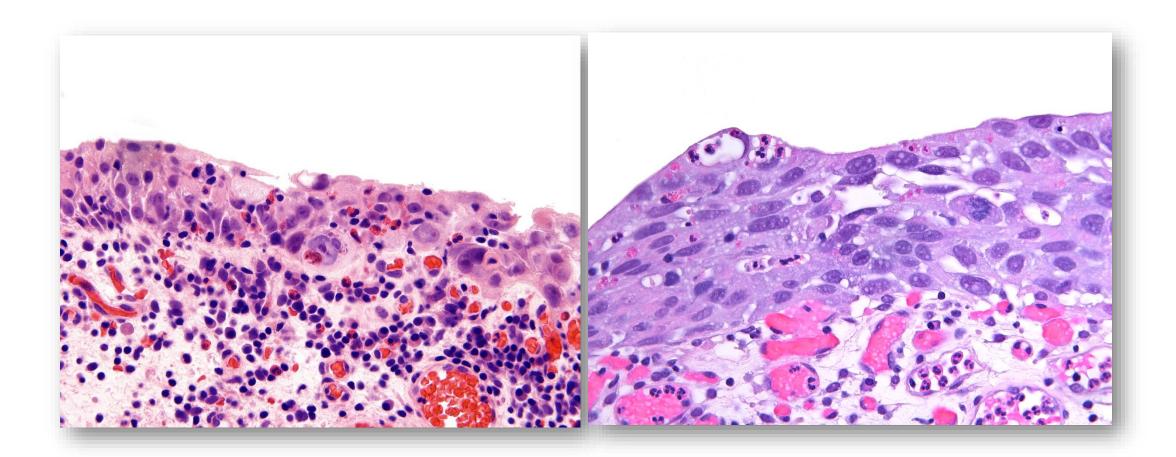
	Urothelial tumours	
	Infiltrating urothelial carcinoma	8120/3
	Nested, including large nested	
	Microcystic	
	Micropapillary	8131/3
	Lymphoepithelioma-like	8082/3
	Plasmacytoid / signet ring cell / diffuse	
	Sarcomatoid	8122/3
	Giant cell	8031/3
	Poorly differentiated	8020/3
	Lipid-rich	
	Clear cell	
	Non-invasive urothelial neoplasms	
Ħ	Urothelial carcinoma in situ	8120/2
	Non-invasive papillary urothelial	
	carcinoma, low-grade	8130/2
	Non-invasive papillary urothelial	
	carcinoma, high-grade	8130/2
	Papillary urothelial neoplasm of	
	low malignant potential	8130/1
	Urothelial papilloma	8120/0
	Inverted urothelial papilloma	8121/0
	 Urothelial proliferation of uncertain 	
	malignant potential	
	Urothelial dysplasia	

WHO Classification of the Urinary and Male Genital Tumours 5th edition series

Urothelial Tumours			
Non-Invasive Urothelial Neoplasia			
Urothelial papilloma			
Inverted urothelial papilloma			
Papillary urothelial neoplasm of low malignant potential			
Non-invasive papillary urothelial carcinoma, low-grade			
Non-invasive papillary urothelial carcinoma, high-grade			
Urothelial carcinoma in situ			
Invasive Urothelial Neoplasia			
Invasive urothelial carcinoma			

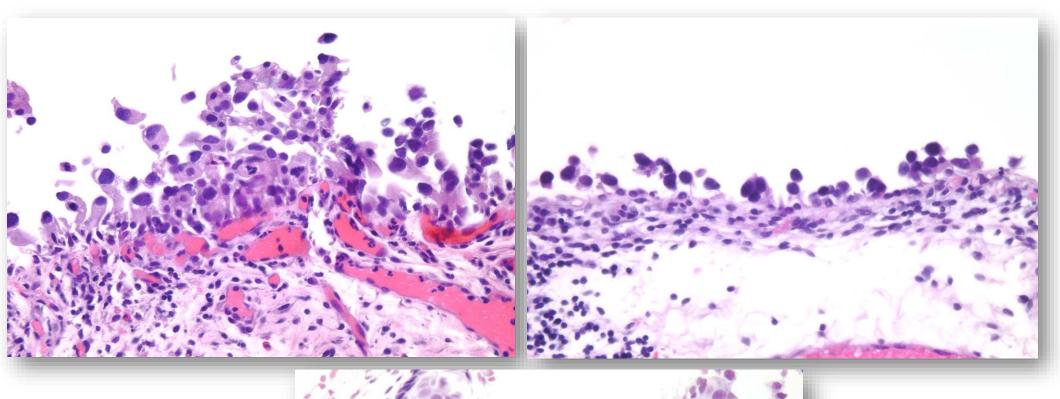
"Flat" Precursor Lesions

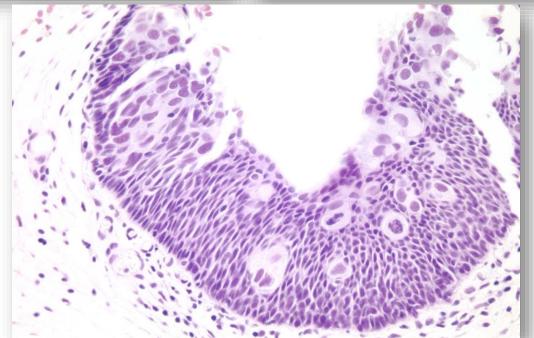
Urothelial Dysplasia

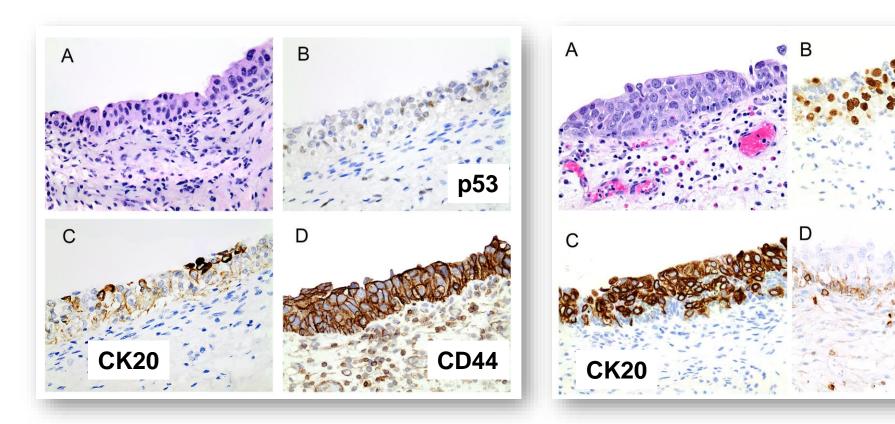

Should "Urothelial Dysplasia" remain an entity?


- Term is greatly debated
- Definition of dysplasia in urinary tract is not a synonym of intraepithelial neoplasia
 in other organs (SIL/PeIN etc)


"Lesion that encompasses changes that are <u>thought to be</u> pre-neoplastic in nature, but cytologically <u>fall short</u> of the diagnosis of carcinoma in situ"

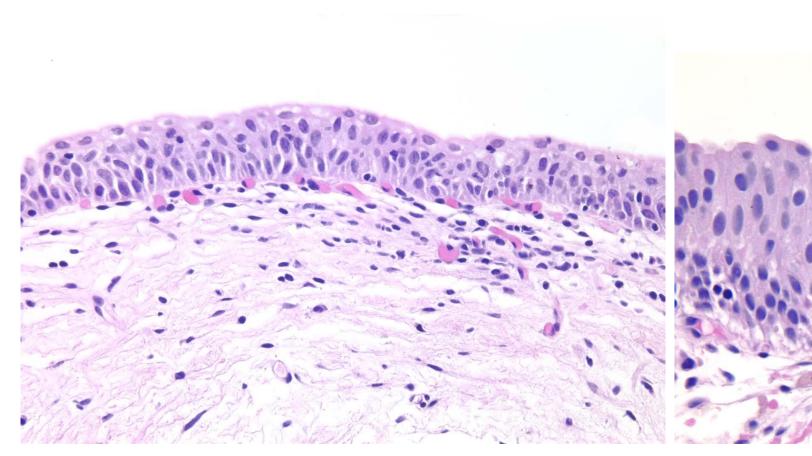

Urothelial CIS

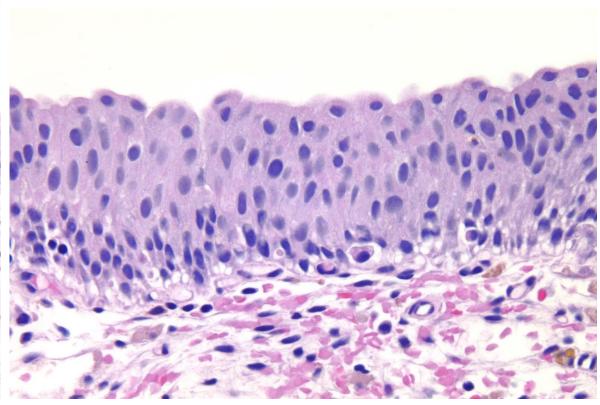

- Presence of cytologically malignant cells regardless of quantity
 - No need to be full thickness
 - Pagetoid cells
 - **Spectrum** of atypia and cell size
 - **Umbrella** cell layer may still be present
- CIS cells **5x size** of stromal lymphocytes, compared to normal cells which are 2x size of lymphocytes
- Enlarged & hyperchromatic ON 10X OBJECTIVE
- Dyscohesive: "denuding cystitis"

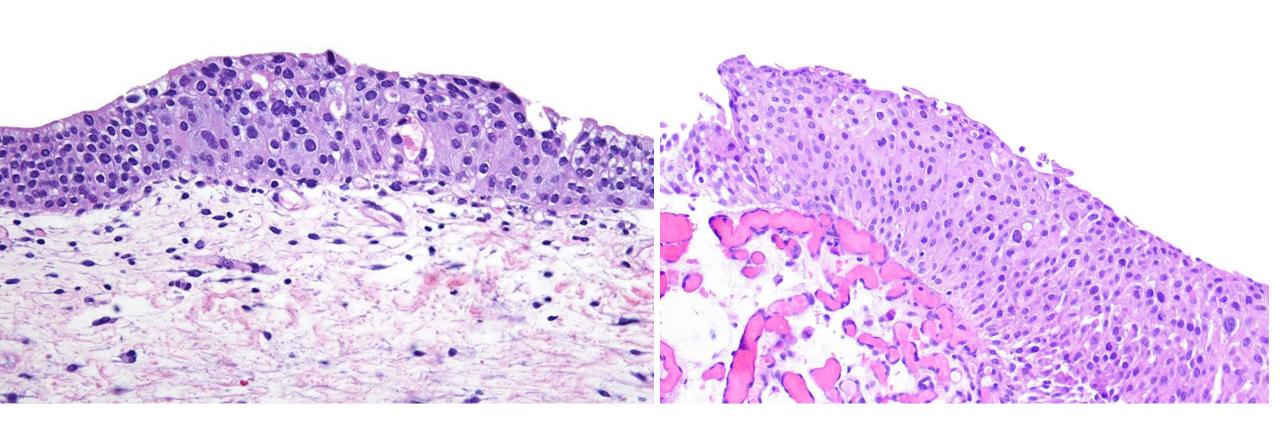


Immunohistochemistry in the workup of bladder biopsies: Frequency, variation and utility of use at an academic center

Patrick McIntire*, Reema Khan, Irem Kilic, Eva M. Wojcik, Stefan E. Pambuccian, Güliz A. Barkan


Loyola University Medical Center, Department of Pathology and Laboratory Medicine, Maywood, IL, United States


Annals of Diagnostic Pathology 41 (2019) 124-128


"our institution was an early adopter of IHC but it quickly fell out of favor to a total of only 5 cases in 2017"

Urothelial Dysplasia

Urothelial Dysplasia

"Flat" Precursor Lesions

Urothelial Dysplasia

Should "Urothelial Dysplasia" remains an entity?

- Term is greatly debated
- Definition of dysplasia in urinary tract is not a synonym of intraepithelial neoplasia in other organs (SIL/PeIN etc)

"Lesion that encompasses changes that are thought to be pre-neoplastic in nature, but cytologically fall short of the diagnosis of carcinoma in situ"

- Lack of agreement on concrete morphologic criteria

 poor diagnostic reproducibility
- IHC is of no help differentiating from CIS
- Biologic significance, difficult to assess:
 - Reproducibility in diagnosis
 - Compounding aspects of multifocality
 - Need for long FU

WHO 5th edition Consensus: While term is preserved, entity does not merit an independent section. Mentioned under urothelial CIS for potential use when lesions fall short of CIS

Urothelial Dysplasia

My current approach

Diagnosis: Marked urothelial atypia, see comment.

Comment: can not R/O CIS

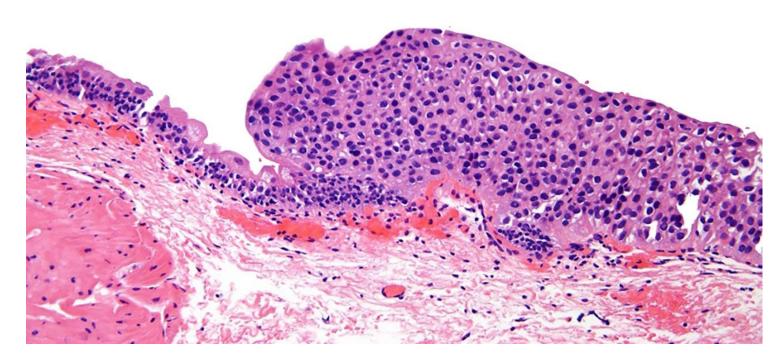
"Flat" Precursor Lesions

UPUMP

Should "Urothelial Proliferation of Undetermined Malignant Potential" remain an entity?

UPUMP

- Term introduced in WHO 4th edition
- Encompass lesions previously designated as
 - "papillary urothelial hyperplasia"
 - "Flat hyperplasia with atypia?"
- **Tented** architectural appearance with **short non branching papillae** covered by **mildly atypical** urothelium
- Thought to be precursors of non-invasive low grade papillary carcinoma


WHO 5th edition Consensus: UPUMP is no longer recognized as an entity

(considered early non-invasive low grade papillary carcinoma or shoulder extension of such tumors)

UMPUM

UMPUM

WHO Classification of the Urinary and Male Genital Tumours 5th edition series

- WHO 5th edition series structural reorganization
- Refinements of terminology and classification
- Precursor lesions (HGPIN; IDC-P; IAP)
- Grading / Staging / Urine Cytology
- Advances in molecular pathways (targets of therapy)

Grading

WHO Classification of the Urinary and Male Genital Tumours
5th edition series

- First proposed in 1998
- Promulgated by the WHO in the third (2004) and fourth (2016)
- Based on architectural and cytological disorder
- Closely reflects the two major molecular pathogenesis pathways
- Clinically relevant

Urothelial Tumours

Non-Invasive Urothelial Neoplasia

Urothelial papilloma

Inverted urothelial papilloma

Papillary urothelial neoplasm of low malignant potential

Non-invasive papillary urothelial carcinoma, low-grade

Non-invasive papillary urothelial carcinoma, high-grade

Urothelial carcinoma in situ

Invasive Urothelial Neoplasia

Invasive urothelial carcinoma

Platinum Opinion

Grading Noninvasive Bladder Cancer: World Health Organisation 1973 or 2004 May Be the Wrong Question

Murali Varma^{a,*}, Brett Delahunt^b, Theodorus van der Kwast^c European urology 76 (2019) 413-415

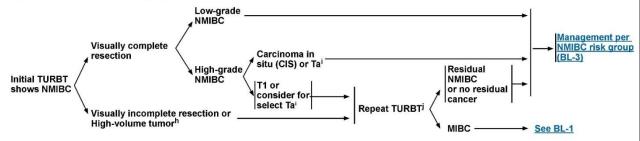
Reply re: Murali Varma, Brett Delahunt, Theodorus van der Kwast. Grading Noninvasive Bladder Cancer: World Health Organisation 1973 or 2004 May Be the Wrong Question. Eur Urol 2019;76:413–5

Two Decades of World Health Organisation/International Society of Urological Pathology Bladder Cancer Grading: Time to Reflect on Accomplishments and Plan Refinement in the Molecular Era, Not Regress to Readoption of a 45-year-old Classification

Eva Compérat^{a,*}, Mahul Amin^b, Victor Reuter^{c,d}

European Association of Urology (EAU) Prognostic Factor Risk Groups for Non-muscle-invasive Bladder Cancer (NMIBC) Incorporating the WHO 2004/2016 and WHO 1973 Classification Systems for Grade: An Update from the EAU NMIBC Guidelines Panel

Richard J. Sylvester ^{a,*}, Oscar Rodríguez ^b, Virginia Hernández ^{a,c}, Diana Turturica ^d, Lenka Bauerová ^e, Harman Max Bruins ^{a,f}, Johannes Bründl ^g, Theo H. van der Kwast ^h, Antonin Brisuda ⁱ, José Rubio-Briones ^j, Maximilian Seles ^k, Anouk E. Hentschel ^{l,m}, Venkata R.M. Kusuma ⁿ, Nicolai Huebner ^o, Juliette Cotte ^p, Laura S. Mertens ^m, Dimitrios Volanis ^q, Olivier Cussenot ^q, Jose D. Subiela Henríquez ^b, Enrique de la Peña ^c, Francesca Pisano ^{b,d}, Michael Pešl ^s, Antoine G. van der Heijden ^f, Sonja Herdegen ^g, Alexandre R. Zlotta ^t, Jaromir Hacek ^u, Ana Calatrava ^v, Sebastian Mannweiler ^w, Judith Bosschieter ^l, David Ashabere ⁿ, Andrea Haitel ^x, Jean-François Côté ^y, Soha El Sheikh ^z, Luca Lunelli ^r, Ferran Algaba ^{aa}, Isabel Alemany ^{bb}, Francesco Soria ^d, Willemien Runneboom ^{cc}, Johannes Breyer ^g, Jakko A. Nieuwenhuijzen ^l, Carlos Llorente ^c, Luca Molinaro ^{dd}, Christina A. Hulsbergen-van de Kaa ^{cc}, Matthias Evert ^{ee}, Lambertus A.L.M. Kiemeney ^{ff}, James N'Dow ^{gg}, Karin Plass ^{gg}, Otakar Čapoun ^{a,s}, Viktor Soukup ^{a,s}, Jose L. Dominguez-Escrig ^{a,j}, Daniel Cohen ^{a,q}, Joan Palou ^{a,b}, Paolo Gontero ^{a,d}, Maximilian Burger ^{a,g}, Richard Zigeuner ^{a,k}, Amir Hugh Mostafid ^{a,n}, Shahrokh F. Shariat ^{a,i,o}, Morgan Rouprêt ^{a,p}, Eva M. Compérat ^{a,hh}, Marko Babjuk ^{a,i,o}, Bas W.G. van Rhijn ^{a,t}


EUROPEAN UROLOGY 79 (2021) 480-488

NCCN Guidelines Version 5.2021 Non-Muscle Invasive Bladder Cancer

NCCN Guidelines Index
Table of Contents
Discussion

RISK STRATIFICATION OF NMIBC

AUA Risk Stratification for Non-Muscle Invasive Bladder Cancer*

Low Risk	Intermediate Risk	High Risk
Papillary urothelial neoplasm of low malignant potential Low grade urothelial carcinoma	Low grade urothelial carcinoma ↑ T1 or ▶ >3 cm or Multifocal or Recurrence within 1 year High grade urothelial carcinoma ↑ Ta and ১ ≤3 cm and ト Solitary	High grade urothelial carcinoma CIS or T1 or > 3 cm or Multifocal Very high risk features (any): BCG unresponsive ^k Variant histologies ⁱ Lymphovascular invasion Prostatic urethral invasion

Reproduced with permission from Chang SS, Boorjian SA, Chou R, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J Urol 2016;196:1021. *Within each of these risk strata an individual patient may have more or less concerning features that can influence care.

Grading

WHO Classification of the Urinary and Male Genital Tumours
5th edition series

- First proposed in 1998
- Promulgated by the WHO in the third (2004) and fourth (2016)
- Based on architectural and cytological disorder
- Closely reflects the two major molecular pathogenesis pathways
- Clinically relevant

Urothelial Tumours

Non-Invasive Urothelial Neoplasia

Urothelial papilloma

Inverted urothelial papilloma

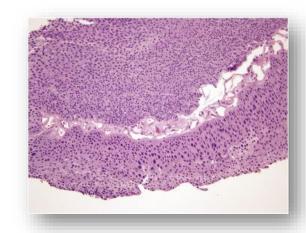
Papillary urothelial neoplasm of low malignant potential

Non-invasive papillary urothelial carcinoma, low-grade

Non-invasive papillary urothelial carcinoma, high-grade

Urothelial carcinoma in situ

Invasive Urothelial Neoplasia

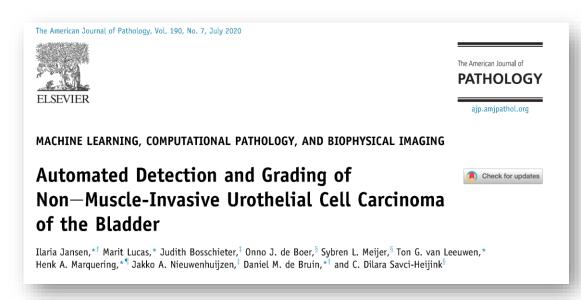

Invasive urothelial carcinoma

Three tiered classification (two tier grading) is maintained

Grading Heterogeneity

WHO Classification of the Urinary and Male Genital Tumours
5th edition series

- Heterogeneity in grade occurs in up to one third of non-Invasive papillary urothelial Carcinoma
- Influence outcome?


WHO 5th edition proposition

- Report as **high grade** if high grade component represents ≥ 5%
- Tumors with <5% high grade component should be reported as low grade with less than 5% high grade
- Pragmatic approach
 - Promote consistency in grading heterogeneous tumors
 - Allow for further data in large appropriately powered and prospectively designed studies

Reis LO et al. Hum Path 2016 Gofrit ON et al. J Urol 2014 Schubert T et al. World J Urol 2015

Computational and Digital Pathology

Urothelial Carcinoma Grading & Urine Cytology

Colling et al. BMC Cancer (2021) 21:995 https://doi.org/10.1186/s12885-021-08698-4

BMC Cancer

RESEARCH ARTICLE

Open Access

Validation of grading of non-invasive urothelial carcinoma by digital pathology for routine diagnosis

Richard Colling^{1,2*}, Hayleigh Colling¹, Lisa Browning^{2,3} and Clare Verrill^{1,2,3}

BJU Int 2021 doi:10.1111/bju.15382

Original Article

Artificial intelligence to improve cytology performances in bladder carcinoma detection: results of the VisioCyt test

Thierry Lebret^{1,2} (D), Geraldine Pignot³, Marc Colombel^{4,5}, Laurent Guy⁶, Xavier Rebillard⁷, Laurent Savareux⁸, Mathieu Roumigue⁹, Sebastien Nivet¹⁰, Monique Coutade Saidi¹¹, Eric Piaton¹² and Camelia Radulescu¹³

Grading of Invasive Urothelial Carcinoma

WHO Classification of the Urinary and Male Genital Tumours
5th edition series

- Overwhelming majority of invasive urothelial carcinoma are high grade
- Rare low-grade invasive urothelial carcinoma lacking significant nuclear atypia are recognized
 - No standardized criteria
 - Favorable outcome?

WHO 5th edition

"Required to grade every invasive urothelial carcinoma"

"Histologic subtypes of urothelial carcinoma and those with divergent differentiation are all considered high grade"

Staging

WHO Classification of the Urinary and Male Genital Tumours
5th edition series

pT1 subcategorization

- Extent of lamina propria invasion carries PGx value
 - Micrometric measurements (microscopic vs extensive invasion)
 - **Histo-anatomic** landmarks (*MM* and vascular plexus)
 - Micrometric ? more feasible and better predictor
- Higher subcategories correlate with recurrence and stage progression

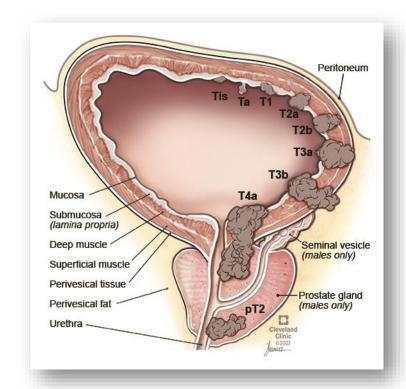
System	Technique	Measure of Invasion	Landmark or Cutoff	Approximate Microscope Objective Cutoff
T1a/T1b	Histoanatomic	Depth (level)	MM/VP	_
Tla/Tlb/ Tlc	Histoanatomic	Depth (level)	MM/VP	_
T1m/T1e	Micrometric	Depth* or diameter†	0.5 mm	×40
ROL1/ ROL2	Micrometric	Diameter†	1 mm	×20
ALLICA	Micrometric	Diameter†	2.3 mm‡	×10

WHO 5th Edition

Well designed prospective head-to-head comparisons **NEEDED**

"Pathologists are strongly encouraged to convey the extent of lamina propria invasion using any of the proposed approaches"

Compérat E ... Reuter V. Adv Anat Pathol. 2021 Raspollini MR et al. Virchows Arch 2020 Fransen Van de Putte EE et al. Urol Oncology 2018 Paner GP, Montironi R, Amin MB. Adv Anat Pathol. 2017


Staging

WHO Classification of the Urinary and Male Genital Tumours
5th edition series

Staging urothelial carcinoma invading prostate stroma

- Contiguous direct invasion from transmural bladder primary (pT4a)
- Originated in urethra (pT2)
- Differences of pT4a by gender-specific organ involvement have conflicting results

"maintaining a single category appears to be the optimal approach at present"

Courtesy of Drs. Oleksandr Kryvenko and Sean Williamson

Paner GP... Amin MB. Eur Urol. 2018 May M et al. Urol Oncol 2013 Grajales V et al. Urology 2021

Urine Cytology

WHO Classification of the Urinary and Male Genital Tumours
5th edition series

The Paris System for Reporting Cytology (TPS)

- Accuracy significantly improved
- Acknowledges inability to reliably detect low grade urothelial neoplasms
- Low grade urothelial neoplasm (LGUN) encompasses papilloma, PUNLMP and LGUC
- Prioritize identification of High Grade Urothelial Ca (HGUC)

WHO 5th edition

Recommends adoption of The Paris System for Reporting Cytology (TPS)

Rosenthal DL, Wojcik EM, Kurtycz DFI, editors. The Paris System for reporting urinary cytology.

Cham (Switzerland): Springer International Publishing; 2016

The Paris System TPS

Diagnostic category	Diagnostic criteria	ROHM
Negative for High Grade Urothelial Ca (NHGUC)	Benign urothelial, glandular, squamous cells, changes due to instrumentation, lithiasis, polyoma, therapy	8% - 24%
Atypical Urothelial Cells (AUC)	Required N/C ratio ≥ 0.5 and one of: Hyperchromasia Irregular clumpy chromatin Irregular nuclear contours	24% - 53%
Suspicious for High Grade Urothelial Ca (SHGUC)	Required N/C ratio > 0.7 and hyperchromasia, and one of: Irregular clumpy chromatin Irregular nuclear contours	59% - 94%
Positive for High Grade Urothelial Ca (HGUC)	Required cellularity (> 5-10 cells) and N/C ratio > 0.7 - Hyperchromasia - Irregular clumpy chromatin - Irregular nuclear contours	76% - 100%
Low Grade Urothelial Neoplasm (LGUN)	Required fibrovascular cores and absence of nuclear atypia	0% - 44%

WHO Classification of the Urinary and Male Genital Tumours 5th edition series

- WHO 5th edition series structural reorganization
- Refinements of terminology and classification
- Precursor lesions (HGPIN; IDC-P; IAP)
- Grading / computational pathology (AI)
- Advances in molecular pathways (targets of therapy)

Overview

Advances in Urothelial Carcinoma

Genomic Advances in Urothelial Carcinoma

- Bladder Cancer TCGA Studies: Genomic Taxonomy
- Immuno-oncology (I/O)
- Molecular insights into Variants Histology
- UTUC Genomics

Liquid Biopsy

- Early Detection
- Prognostics and Rx Prediction

Overview

Advances in Urothelial Carcinoma

Genomic Advances in Urothelial Carcinoma

- Bladder Cancer TCGA Studies: Genomic Taxonomy
- Immuno-oncology (I/O)
- Molecular insights into Variants Histology
- UTUC Genomics

Liquid Biopsy

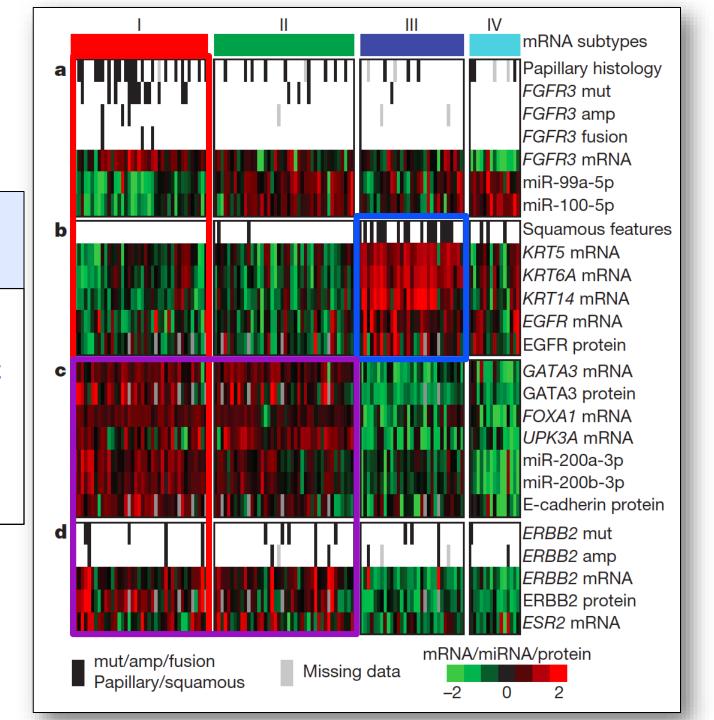
- Early Detection
- Prognostics and Rx Prediction

Comprehensive molecular characterization of urothelial bladder carcinoma

The Cancer Genome Atlas Research Network*

Nature 2014

Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer

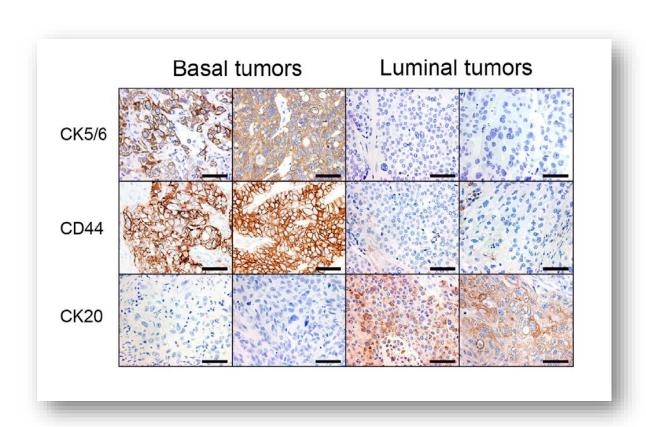

A. Gordon Robertson^{1,25}, Jaegil Kim^{2,25}, Hikmat Al-Ahmadie³, Joaquim Bellmunt⁴, Guangwu Guo⁵, Andrew D. Cherniack², Toshinori Hinoue⁶, Peter W. Laird⁶, Katherine A. Hoadley⁷, Rehan Akbani⁸, Mauro A.A. Castro⁹, Ewan A. Gibb¹, Rupa S. Kanchi⁸, Dmitry A. Gordenin¹⁰, Sachet A. Shukla⁵, Francisco Sanchez-Vega¹¹, Donna E. Hansel¹², Bogdan A. Czerniak¹³, Victor E. Reuter³, Xiaoping Su⁸, Benilton de Sa Carvalho¹⁴, Vinicius S. Chagas⁹, Karen L. Mungall¹, Sara Sadeghi¹, Chandra Sekhar Pedamallu², Yiling Lu¹⁵, Leszek J. Klimczak¹⁶, Jiexin Zhang⁸, Caleb Choo¹, Akinyemi I. Ojesina¹⁷, Susan Bullman², Kristen M. Leraas¹⁸, Tara M. Lichtenberg¹⁸, Catherine J. Wu¹⁹, Nicholaus Schultz¹¹, Gad Getz², Matthew Meyerson²⁰, Gordon B. Mills¹⁵, David J. McConkey²¹, TCGA Research Network, John N. Weinstein^{8,22,26}, David J. Kwiatkowski^{23,26}, and Seth P. Lerner^{24,26}

TCGA 2014 mRNA/miRNA/Protein clusters

Cluster I PAPILLARY-LIKE

Clusters III BASAL SQUAMOUS-LIKE

Clusters I/II LUMINAL BREAST-LIKE

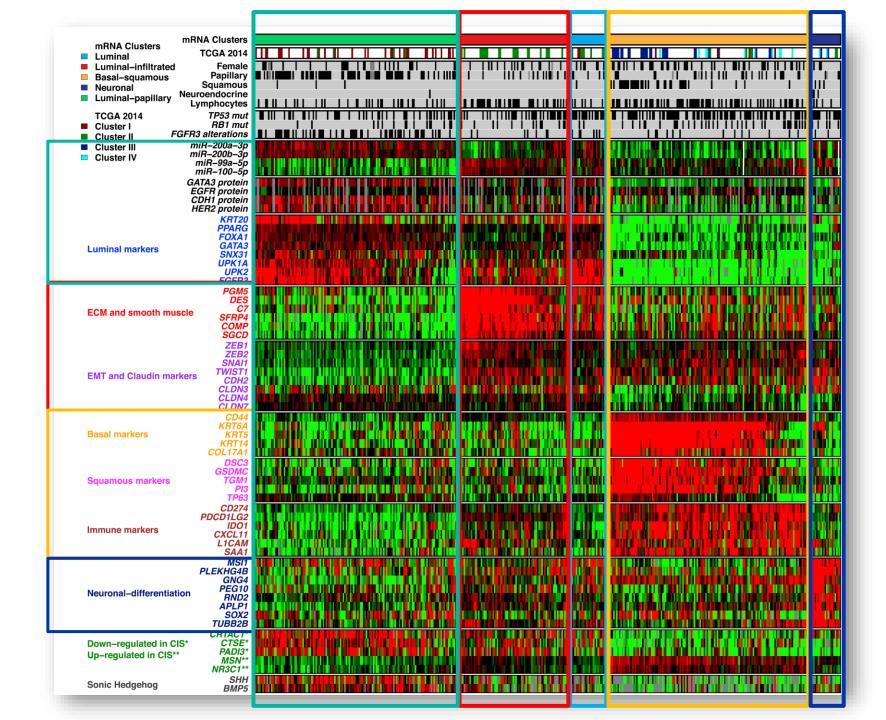


Identification of Distinct Basal and Luminal Subtypes of Muscle-Invasive Bladder Cancer with Different Sensitivities to Frontline Chemotherapy

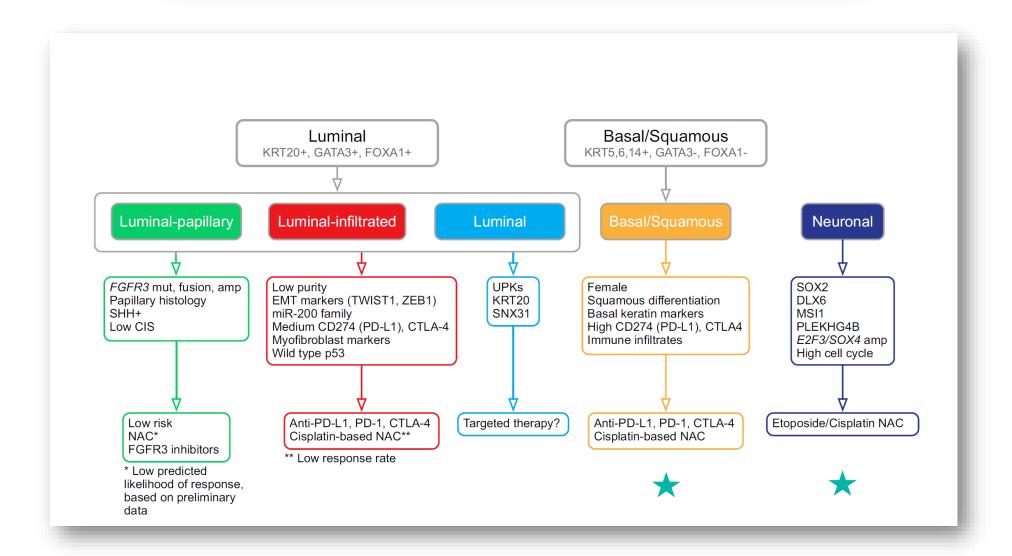
Choi W et al, Cancer Cell 2014

Three molecular subtypes of MIBC

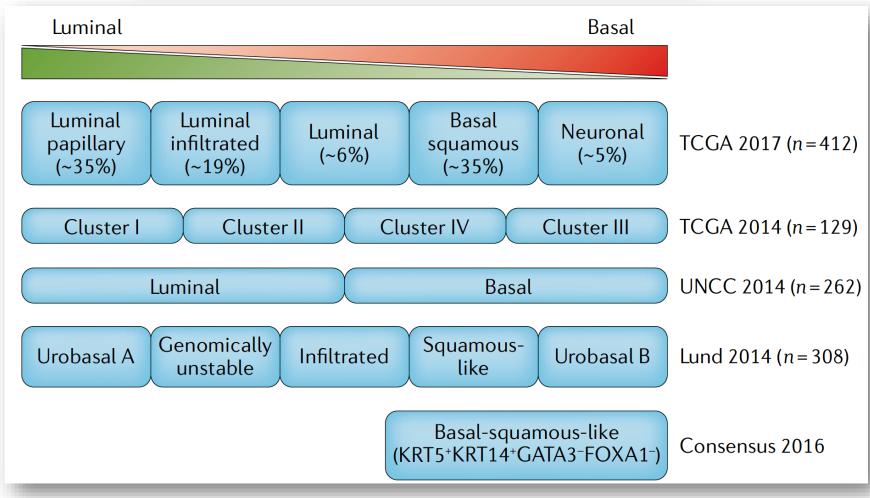
Basal/Luminal/p53-like

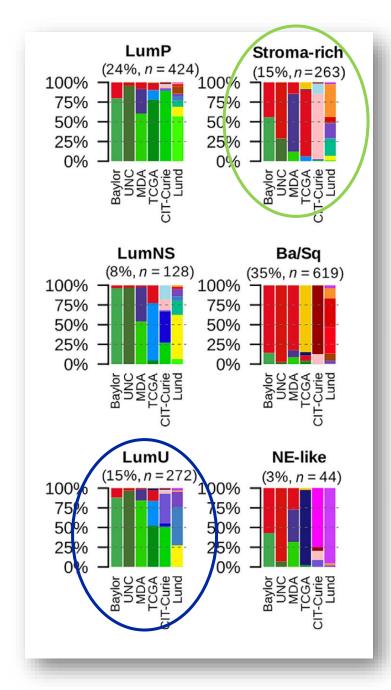

Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer

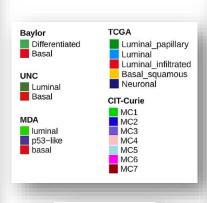
A. Gordon Robertson^{1,25}, Jaegil Kim^{2,25}, Hikmat Al-Ahmadie³, Joaquim Bellmunt⁴, Guangwu Guo⁵, Andrew D. Cherniack², Toshinori Hinoue⁶, Peter W. Laird⁶, Katherine A. Hoadley⁷, Rehan Akbani⁸, Mauro A.A. Castro⁹, Ewan A. Gibb¹, Rupa S. Kanchi⁸, Dmitry A. Gordenin¹⁰, Sachet A. Shukla⁵, Francisco Sanchez-Vega¹¹, Donna E. Hansel¹², Bogdan A. Czerniak¹³, Victor E. Reuter³, Xiaoping Su⁸, Benilton de Sa Carvalho¹⁴, Vinicius S. Chagas⁹, Karen L. Mungall¹, Sara Sadeghi¹, Chandra Sekhar Pedamallu², Yiling Lu¹⁵, Leszek J. Klimczak¹⁶, Jiexin Zhang⁸, Caleb Choo¹, Akinyemi I. Ojesina¹⁷, Susan Bullman², Kristen M. Leraas¹⁸, Tara M. Lichtenberg¹⁸, Catherine J. Wu¹⁹, Nicholaus Schultz¹¹, Gad Getz², Matthew Meyerson²⁰, Gordon B. Mills¹⁵, David J. McConkey²¹, TCGA Research Network, John N. Weinstein^{8,22,26}, David J. Kwiatkowski^{23,26}, and Seth P. Lerner^{24,26}


TCGA
Cell 2017

TCGA Cell 2017


- 1- Luminal Pap
- 2- Luminal Infiltrated
- 3- Luminal
- 4- Basal-Squamous
- 5- Neuronal


Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017



Molecular and histopathology directed therapy for advanced bladder cancer

Alifrangis C. et al Nature Rev. Urology 2019

Lund
UroA-Prog
UroC
Uro-Inf
UroB
GU

GU-Inf Ba/Sq-Inf

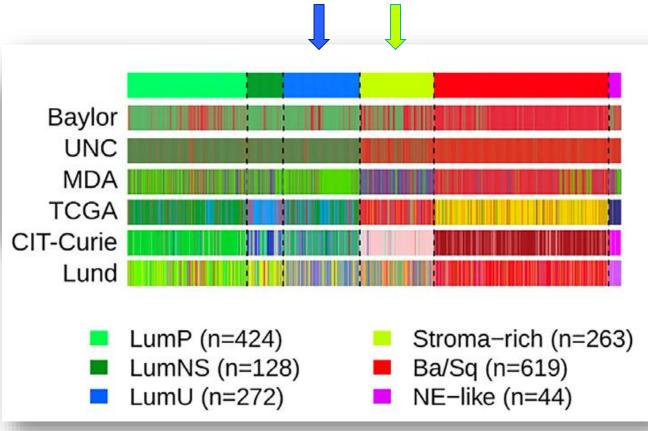
Ba/Sq Mes-like Sc/NE-like

Aurélie Kamoun^{a,*}, Aurélien de Reyniès^{a,†}, Yves Allory ^{b,c,†}, Gottfrid Sjödahl^{d,†},

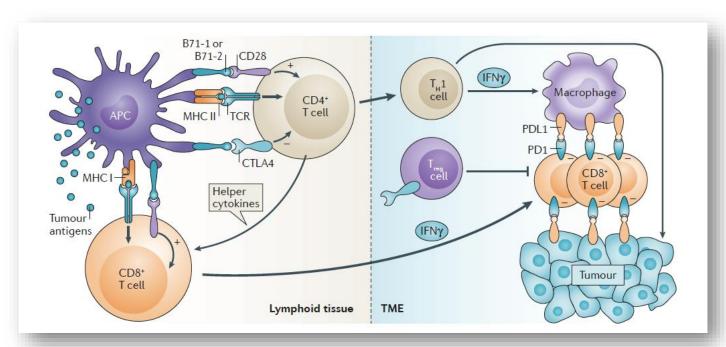
A. Gordon Robertson^{e,†}, Roland Seiler^f, Katherine A. Hoadley^g, Clarice S. Groeneveld^{a,c,h},

Hikmat Al-Ahmadieⁱ, Woonyoung Choi^j, Mauro A.A. Castro^h, Jacqueline Fontugne^{b,c},

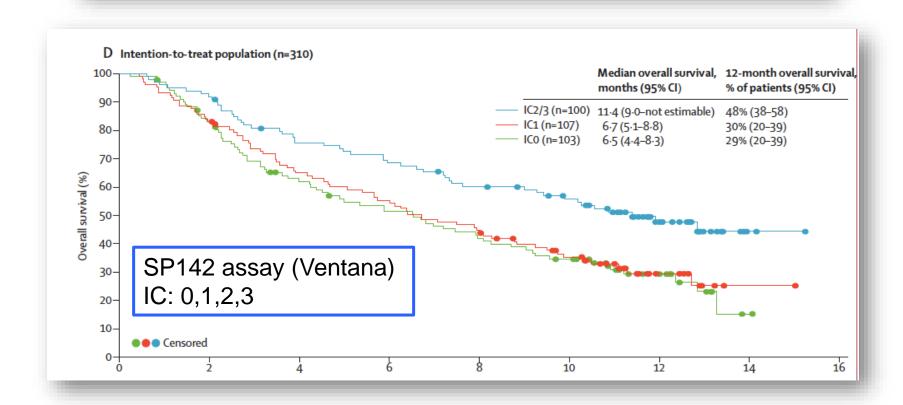
Pontus Eriksson^k, Qianxing Mo^l, Jordan Kardos^g, Alexandre Zlotta^m, Arndt Hartmannⁿ,


Colin P. Dinney^{o,p}, Joaquim Bellmunt^q, Thomas Powles^r, Núria Malats^s, Keith S. Chan^t,

William Y. Kim^{u,v}, David J. McConkey^j, Peter C. Black^w, Lars Dyrskjøt^x, Mattias Höglund^k,


Seth P. Lerner^y, Francisco X. Real^z, François Radvanyi^c, the Bladder Cancer Molecular

Taxonomy Group[‡]

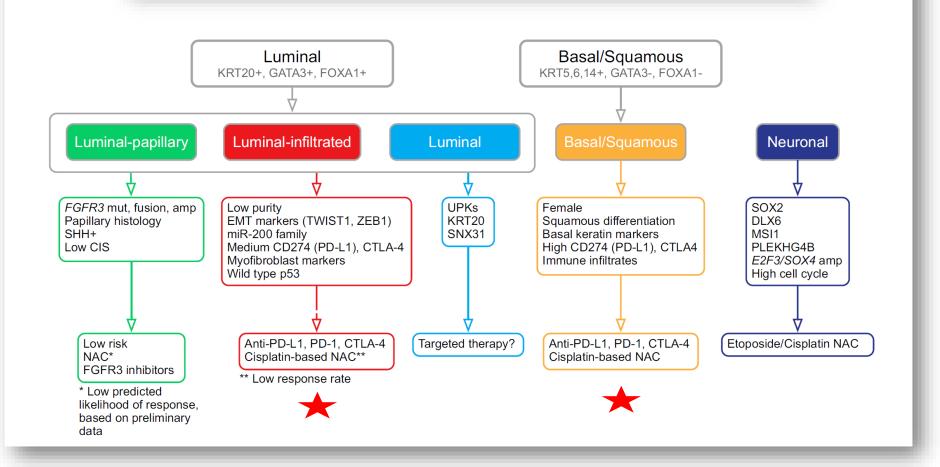


Immune Checkpoint Inhibitors in Bladder Cancer

Nature Reviews CANCER 2016

Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial

Rosenberg J et al Lancet 2016


Study details	Treatment	End points	Patient selection	ORR (%)	RR by PD-L1 expression (%)	Survival (months)	Grade 3-4 toxicity (%)	IHC mAb and comments
KEYNOTE-012 (REF. ⁶⁴); phase lb	Pembrolizumab	Safety, tolerability, ORR	aUC, post-PLT setting; $n = 33$ (27 evaluable)	26	PD-L1*: 38	• mPFS: 2 • mOS: 13	15	• Dako 22C3 mAb
KEYNOTE-045 (REF. ⁵¹); phase III	Pembrolizumab or physician's choice of chemotherapy (vinflunine, paclitaxel or docetaxel)	Co-primary: OS and PFS	aUC, second- line setting; n = 542	21.1 versus 11.4	CPS ≥10%: 21.6 versus 6.7	* OS: 10.3 versus 7.4 (HR 0.73; P = 0.002) * PFS: 2.1 versus 3.3 (HR 0.98, P = 0.42) * mOS for CPS ≥10%: 8 versus 5.2 (HR 0.57; P = 0.005)	15.0 versus 49.4	* Dako 22C3 mAb * Benefit of pembrolizumab in all subgroups, including the PD-L1 < 1% group and patients with liver metastasis
KEYNOTE-052 (REF. ⁵²); phase II	Pembrolizumab	ORR	aUC, PLT- ineligible setting; n = 374 (370 treated)	24	• CPS validation cohort (n = 270) • CPS ≥10%: 39 • CPS 1% to <10%: 20 • CPS <1%: 11	mPFS: 2 (6-month OS: 67%)	15	* Dako 22C3 mAb * PD-L1 centrally reviewed * Durable response rate
CheckMate 032 (REF. ⁵³); phase I/II	Nivolumab	ORR	aUC, post-PLT setting; n = 86 (78 treated)	24.4	• ≥1% on TCs: 24.0 • <1% on TCs: 26.2	mPFS: 2.8mOS: 9.7mDR: 9.4	22	Dako 28-8 mAbUnselected on PD-L1
CheckMate 275 (REF. ⁵⁴); phase II	Nivolumab	ORR	aUC, post- PLT setting; n = 270 (265 evaluable)	19.6	• ≥5% on TCs: 28.4 • 1–4% on TCs: 23.8 • <1% on TCs: 16.1	• mPFS: 2 • mOS: 8.7	18	 Dako 28-8 mAb Unselected on PD-L1 25-gene IFNy response signature
PCD4989g ¹⁷¹ ; phase I	Atezolizumab	Safety, tolerability, ORR	mUBC, any line; $72\% \ge 2$ lines; $n = 68$ (67 evaluable)	26.2	• PD-L1 IHC 0-1: 11 • PD-L1 IHC 2-3: 43	Not reported	4	 Ventana SP142 Initially only PD-L1* patients and then expanded to all patients
PCD4989g (updated) ¹⁷² ; phase I	Atezolizumab	Safety, tolerability, ORR	mUBC, any line; $72\% \ge 2$ lines; $n = 95$	10.1	• ≥5% on ICs: 40 • <5% on ICs: 11	mPFS: 2.7 mOS: 10.1 mDR: 22.1 mPFS for PD-L1 ≥5% on ICs: 5.5 mOS for PD-L1 ≥5% on ICs: 14.6	9	 Ventana SP142 Similar OS in patients aged ≥65 years and patients aged years
IMvigor210 (cohort 1) ⁷⁴ ; phase II	Atezolizumab	ORR	aUC, PLT- ineligible setting; n = 123 (119 evaluable)	23	• <1% on ICs: 21 • 1% to <5% on ICs: 21 • ≥5% on ICs: 28	• mPFS: 2.7 • mOS: 15.9	7	 Ventana SP263 mAb High ORR in UTUC TMB predicts ORR
IMvigor210 (cohort 2) ⁵⁶ ; phase II	Atezolizumab	ORR	aUC, post- PLT setting; n = 315 (310 treated)	15	 <1% on ICs: 8 1% to <5% on ICs: 10 ≥5% on ICs: 26 	mPFS: 2.1mOS: 11.4mDR: 13.7 (not reached)	16	 Ventana SP263 mAb TCGA-T and TMB predictive of ORR
IMvigor211 (REF. ³⁸); phase III	Atezolizumab versus physician's choice of chemotherapy (vinflunine, paclitaxel or docetaxel)	ORR in PD-L1+ patients (≥5% PD-L1 expression of immune cells)	aUC; n = 931	13 versus 13	≥5% on ICs: 23 versus 22	* OS for PD-L1 ≥5% on ICs: 11.1 versus 10.6 (HR 0.87; P = 0.41) * OS for PD-L1 ITT population: 8.6 versus 8.0 (HR 0.85; NS)	20 versus 43	Ventana SP142 mAb PD-L1 expression not predictive

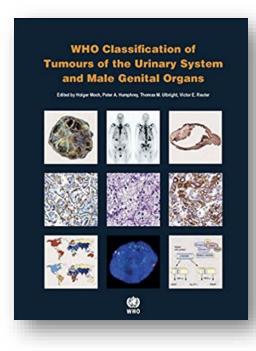
Immune Check inhibitors Trials in Advanced BC

Study details	Treatment	End points	Patient selection	ORR (%)	RR by PD-L1 expression (%)	Survival (months)	Grade 3-4 toxicity (%)	IHC mAb and comments
Massard et al. 2016 (REF. ⁵⁹); phase I/II	Durvalumab	Safety, ORR	mUBC, any line; 31.1% ≥ 3 lines; $n = 61$ (42 evaluable)	31	• ≥25% on TCs and ICs: 46.4 • <25% on TCs and ICs: 0	Not reported	G3: 4.9	SP263 mAbMedian FU 4.3 months
Powles et al. 2017 (REF. ⁶⁰); phase I/II	Durvalumab	Safety, ORR	aUBC, any line; 95.3% post-PLT setting; n = 191	17.8	≥25% on TCs and ICs: 27.6<25% on TCs and ICs: 5.1	• mPFS: 1.5 • mOS: 18.2 (median FU only 4.3 months)	6.8	 SP263 mAb High ORR in LN only disease
JAVELIN ⁶¹ ; phase I	Avelumab	Safety, tolerability, ORR	mUC, post- PLT setting; n = 44	18.2	• ≥5% on TCs: 50 • <5% on TCs: 4.3	• mPFS: 2.9 • mOS: 13.7	6.8	Dako 73-10 mAb5 CRs
JAVELIN (updated) ⁶² ; phase I	Avelumab	Safety, tolerability, ORR	aUC, post-PLT setting or PLT-ineligible setting; n = 249 (161 second line)	16	• ≥5% on TCs: 24 • <5% on TCs: 13	• mPFS: 1.6 • mOS: 6.5	8	Dako 73-10 mAbPooled analysis of 2 cohorts

Alifrangis C. et al Nature Rev. Urology 2019

Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017

Take home points


- Urothelial Dysplasia is on the way out ©
- UPUMP no more
- Invasive urothelilal carcinoma subtypes and divergent differentiation should be recognized and stated
- The many flavors of Nested subtype
- Grading: WHO 04 survives
- pT1 substaging should be attempted

Take home points

 Integrated genomic and transcriptomic analysis has improved the identification of clinically relevant intrinsic molecular subtypes of MIBC and UrCa Subtypes

Molecular subtyping can help predict response to NAC

 ICI lead to durable response in subsets of MIBC that could be refined by molecular subtyping (prospective trials) THANK YOU!

WHO classification of tumours of the urothelial tract

Urothelial tumours		Neuroendocrine tumours	
Infiltrating urothelial carcinoma	8120/3	Small cell neuroendocrine carcinoma	8041/3
Nested, including large nested	0120/3	Large cell neuroendocrine carcinoma	8013/3
Microcystic		Well-differentiated neuroendocrine tumour	8240/3
Microcystic	8131/3	Paraganglioma	8693/1
Lymphoepithelioma-like	8082/3	Faragarigiloria	0093/1
Plasmacytoid / signet ring cell / diffuse	0002/3	Melanocytic tumours	
Sarcomatoid	8122/3	Malignant melanoma	8720/3
Giant cell	8031/3	Naevus	8720/0
Poorly differentiated	8020/3	Melanosis	012010
Lipid-rich	0020/0	Wicial 10313	
Clear cell		Mesenchymal tumours	
Clear ceil		Rhabdomyosarcoma	8900/3
Non-invasive urothelial neoplasms		Leiomyosarcoma	8890/3
Urothelial carcinoma in situ	8120/2	Angiosarcoma	9120/3
Non-invasive papillary urothelial	0120/2	Inflammatory myofibroblastic tumour	8825/1
carcinoma, low-grade	8130/2	Perivascular epithelioid cell tumour	0023/1
Non-invasive papillary urothelial	0100/2	Benign	8714/0
carcinoma, high-grade	8130/2	Malignant	8714/3
Papillary urothelial neoplasm of	0100/2	Solitary fibrous tumour	8815/1
low malignant potential	8130/1	Leiomyoma	8890/0
Urothelial papilloma	8120/0	Haemangioma	9120/0
Inverted urothelial papilloma	8121/0	Granular cell tumour	9580/0
Urothelial proliferation of uncertain	0121/0	Neurofibroma	9540/0
malignant potential		1100101101101	00 10,0
Urothelial dysplasia		Urothelial tract haematopoietic and	
o. o		lymphoid tumours	
Squamous cell neoplasms		,p	
Pure squamous cell carcinoma	8070/3	Miscellaneous tumours	
Verrucous carcinoma	8051/3	Carcinoma of Skene, Cowper, and Littre glands	8140/3
Squamous cell papilloma	8052/0	Metastatic tumours and tumours extending	
		from other organs	
Glandular neoplasms		Epithelial tumours of the upper urinary tract	
Adenocarcinoma, NOS	8140/3	Tumours arising in a bladder diverticulum	
Enteric	8144/3	Urothelial tumours of the urethra	
Mucinous	8480/3		
Mixed	8140/3		
Villous adenoma	8261/0	The morphology codes are from the International Classification	of Diseases
		for Oncology (ICD-O) {917A}. Behaviour is coded /0 for benign	tumours;
Urachal carcinoma	8010/3	/1 for unspecified, borderline, or uncertain behaviour; /2 for car	cinoma in
		situ and grade III intraepithelial neoplasia; and /3 for malignant	tumours.
Tumours of Müllerian type		The classification is modified from the previous WHO classification	tion {756A},
Clear cell carcinoma	8310/3	taking into account changes in our understanding of these lesi	ons.
Endometrioid carcinoma	8380/3		

WHO Classification of the Urinary and Male Genital Tumours

5th edition series

Jrothelial Tumours
Ion-Invasive Urothelial Neoplasia
Jrothelial papilloma
nverted urothelial papilloma
Papillary urothelial neoplasm of low malignant potential
Non-invasive papillary urothelial carcinoma, low-grade
Non-invasive papillary urothelial carcinoma, high-grade
Jrothelial carcinoma in situ
nvasive Urothelial Neoplasia
nvasive urothelial carcinoma
Squamous cell neoplasms
Jrothelial squamous cell papilloma
/errucous carcinoma of the bladder
Pure urothelial squamous cell carcinoma
Glandular neoplasms
Adenomas
/illous adenoma
Adenocarcinomas
Adenocarcinoma NOS
Urachal and diverticular neoplasms
Jrachal carcinoma
Diverticular carcinoma
Jrethral neoplasms
Jrethral accessory gland carcinomas
ittre gland carcinoma of the urethra
kene gland carcinoma of the urethra
Cowper gland carcinoma of the urethra
Tumours of Mullerian type

Clear cell adenocarcinoma Endometrioid carcinoma

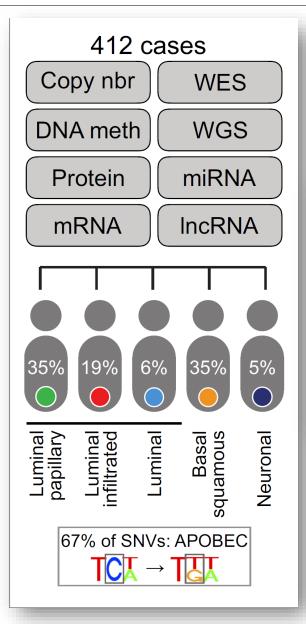
Bladder Cancer (MIBC) TCGA 2014

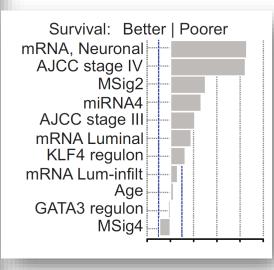
- Integrated genomic analysis of 131 MIBC
- Average Genetic Alterations per tumor:
 - 302 mutations
 - 204 segmental CNA
 - 22 rearrangements
- Recurrent mutations in 32 genes:
 - Cell-cycle regulation
 - Chromatin regulation
 - RTK signaling pathways
 - Nine genes not frequently mutated in cancers (MLL2,ERCC2,ELF3,KLF5,RXRA, CDKN1A)
- Rx Targets in 69% of MIBC

NEW GENOMIC TAXONOMY? TCGA 2014

INTEGARTED GENE EXPRESSION SUBTYPES

PAPILLARY-LIKE


BASAL / SQUAMOUS-LIKE


LUMINAL / BREAST-LIKE

TCGA

Cell 2017

- 412 MIBC
- Integrated molecular platforms
- High mutation rates (mean 8.2/MB)
 - 58 frequently mutated genes
 - 5 mutagenesis signatures (APOBEC)
 - 4 mutation signature clusters (MSig1-4)
- 5 Expression molecular subtypes

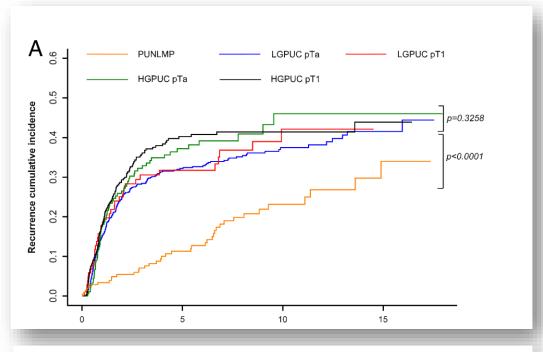
WHO 1973

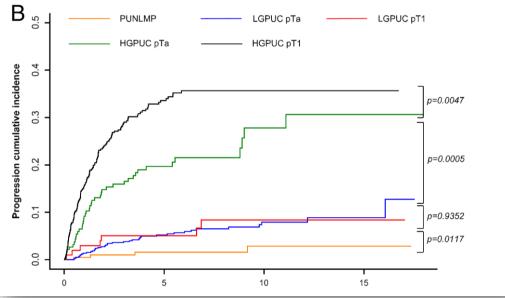
Papilloma

→ Papilloma

TCC I

TCC II

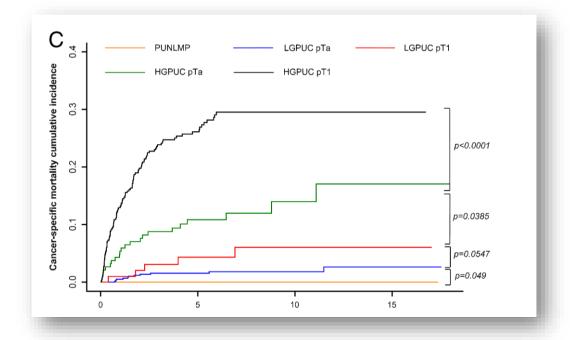

→ LG


TCC III

→ HG

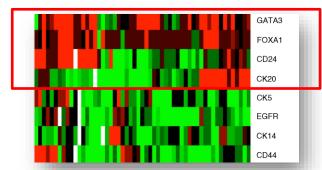
HISTOLOGIC FEATURES OF PAPILLARY UROTHELIAL LESIONS

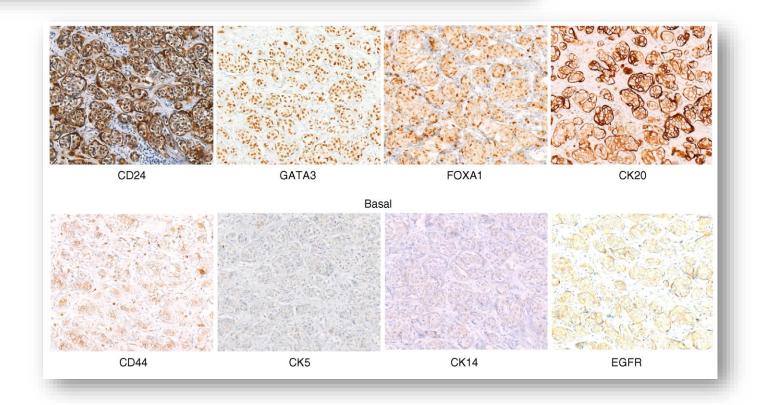
	Papilloma	Papillary neoplasm of low malignant potential	Low-grade papillary carcinoma	High-grade papillary carcinoma
Architecture				
Papillae	Delicate.	Delicate. Occasionally fused.	Fused, branching, and delicate.	Fused, branching and delicate.
Organization of cells	Identical to normal.	Polarity identical to normal. Any thickness. Cohesive.	Predominantly ordered, yet minimal crowding and minimal loss of polarity. Any thickness. Cohesive.	Predominantly disordered with frequent loss of polarity. Any thickness. Often dyscohesive.
Cytology				
Nuclear size	Identical to normal.	May be uniformly enlarged.	Enlarged with variation in size.	Enlarged with variation in size.
Nuclear shape	Identical to normal.	Elongated, round-oval, uniform.	Round-oval. Slight variation in shape and contour.	Moderate-marked pleomorphism.
Nuclear chromatin	Fine.	Fine.	Mild variation within and between cells.	Moderate-marked variation both within and between cells with hyperchromasia.
Nucleoli	Absent.	Absent to inconspicuous.	Usually inconspicuous.	Multiple prominent nucleoli may be present.
Mitoses	Absent	Rare, basal.	Occasional, at any level.	Usually frequent, at any level. May be atypical
Umbrella cells	Uniformly present.	Present.	Usually present.	May be absent.



Pan CC et al. AJCP 2010

The Genitourinary Pathology Society Update on Classification and Grading of Flat and Papillary Urothelial Neoplasia With New Reporting Recommendations and Approach to Lesions With Mixed and Early Patterns of Neoplasia


Adv Anat Pathol • Volume 28, Number 4, July 2021



Distinct genetic alterations and luminal molecular subtype in nested variant of urothelial carcinoma

Veronika Weyerer, ^{1,*} Rebecca Weisser, ^{1,*} Evgeny A Moskalev, ¹ Florian Haller, ¹ Robert Stoehr, ¹ Markus Eckstein, ¹ Ulrike Zinnall, ^{1,2} Nadine T Gaisa, ³ Eva Compérat, ⁴ Aurel Perren, ⁵ Bastian Keck, ^{6,7} Yves Allory, ⁸ Glen Kristiansen, ⁹ Bernd Wullich, ⁶ Abbas Agaimy, ¹ Arndt Hartmann ¹ & Simone Bertz ¹

- 60 Nested UrCa
- TERT promoter mutation and NGS panel of 48 genes (in 26 cases)
- 62.5% TERT promoter mutations
- TP53, JAK3 & CTNNB1 most frequently mutated
- All expressed luminal markers

Take home points

 Integrated genomic and transcriptomic analysis has improved the identification of clinically relevant intrinsic molecular subtypes of MIBC and UrCa Subtypes

Molecular subtyping can help predict response to NAC

 ICI lead to durable response in subsets of MIBC that could be refined by molecular subtyping (prospective trials)

Targeted Rx is promising (FGR3 and VEGF-R inhibitors)

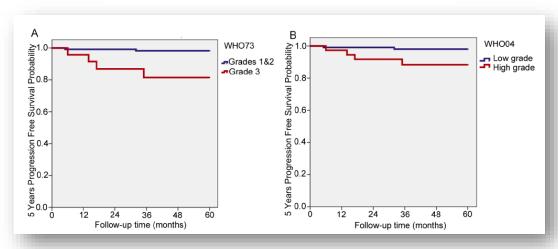
Reproducibility and Prognostic Value of WHO1973 and WHO2004 Grading Systems in TaT1 Urothelial Carcinoma of the Urinary Bladder

Mangrud et al PLOS 2013

Inter-observer Reproducibility

	Overall agreement (95% CI)	Kappa (95% CI)
WHO73	66% (59–73%)	0.68 (0.57-0.78)*
WHO73 (1&2 vs. 3)	89% (83–93%)	0.68 (0.56-0.80)
WHO04	87% (81–91%)	0.70 (0.59–0.81)

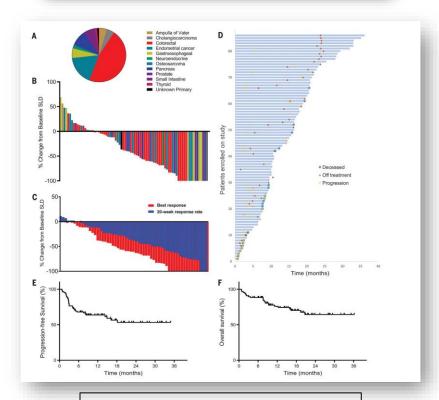
^{*:} Quadratic weighted kappa.


Intra-observer Reproducibility

	Pathologist 1	Pathologist 1		
	Overall agreement (95% CI)	Estimated kappa (95% CI)	Overall agreement (95% CI)	Estimated kappa (95% CI)
WHO73	68% (61–74%)	0.69 (0.59-0.79)*	63% (56–70%)	0.61 (0.48-0.74)*
WHO73 (1&2 vs. 3)	88% (82-92%)	0.66 (0.54-0.79)	89% (83–93%)	0.68 (0.55-0.80)
WHO04	Not performed	Not performed	93% (88–96%)	0.83 (0.74-0.92)

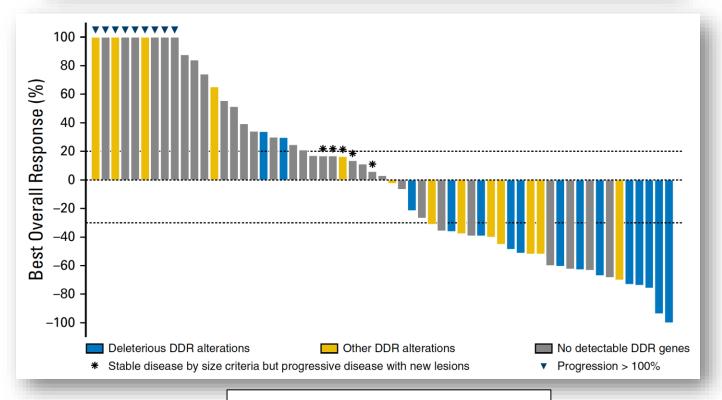
5 Year Recurrence Free Survival

	Threshold	Recurrence/patients n (%)
WHO73	Grade 1	25/44 (57)
	Grade 2	45/98 (46)
	Grade 3	31/51 (61)
WHO73 (1&2 vs. 3)	Grades 1&2	70/142 (49)
	Grade 3	31/51 (61)
WHO04	Low grade	61/119 (51)
	High grade	40/74 (54)


5 Year Progression Free Survival (PFS)

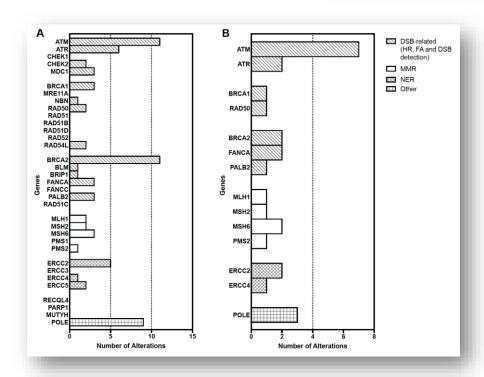
CI: Confidence interval. doi:10.1371/journal.pone.0083192.t002

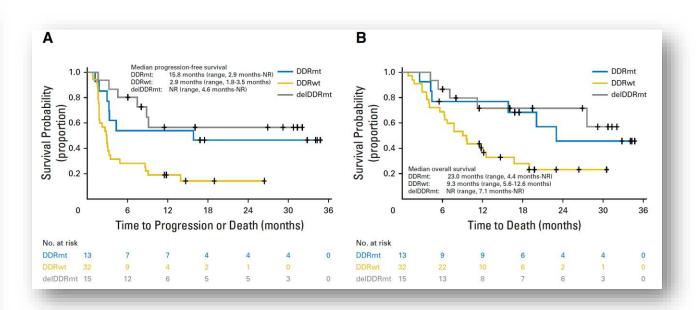
Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade


Dung T. Le, ^{1,2,3} Jennifer N. Durham, ^{1,2,3}, Kellie N. Smith, ^{1,3}, Hao Wang, ^{3,4} Bjarne R. Bartlett, ^{2,4}, Laveet K. Aulakh, ^{2,4} Steve Lu, ^{3,4} Holly Kemberling, ³ Cara Wilt, ³ Brandon S. Luber, ³ Fay Wong, ^{2,4} Nilofer S. Azad, ^{1,3} Agnieszka A. Rucki, ^{1,3} Dan Laheru, ³ Ross Donehower, ³ Atif Zaheer, ⁵ George A. Fisher, ⁶ Todd S. Crocenzi, ⁷ James J. Lee, ⁵ Tim F. Greten, ⁹ Austin G. Duffy, ⁹ Kristen K. Ciombor, ¹⁰ Aleksandra D. Eyring, ¹¹ Bao H. Lam, ¹¹ Andrew Joe, ¹¹ S. Peter Kang, ¹¹ Matthias Holdhoff, ³ Ludmila Danilova, ^{1,3} Leslie Cope, ¹³ Christian Meyer, ³ Shibin Zhou, ^{1,3,4} Richard M. Goldberg, ¹² Deborah K. Armstrong, ³ Katherine M. Bever, ³ Amanda N. Fader, ¹³ Janis Taube, ^{1,3} Franck Housseau, ^{1,3} David Spetzler, ¹⁴ Nianqing Xiao, ³⁴ Drew M. Pardoll, ^{1,3} Nickolas Papadopoulos, ^{3,4} Kenneth W. Kinzler, ^{3,4} James R. Eshleman, ¹⁵ Bert Vogelstein, ^{1,5,4} Robert A. Anders, ^{1,5,15} Luis A. Diaz Jr, ^{1,2,5}, ¹

Le et al., Science 2017

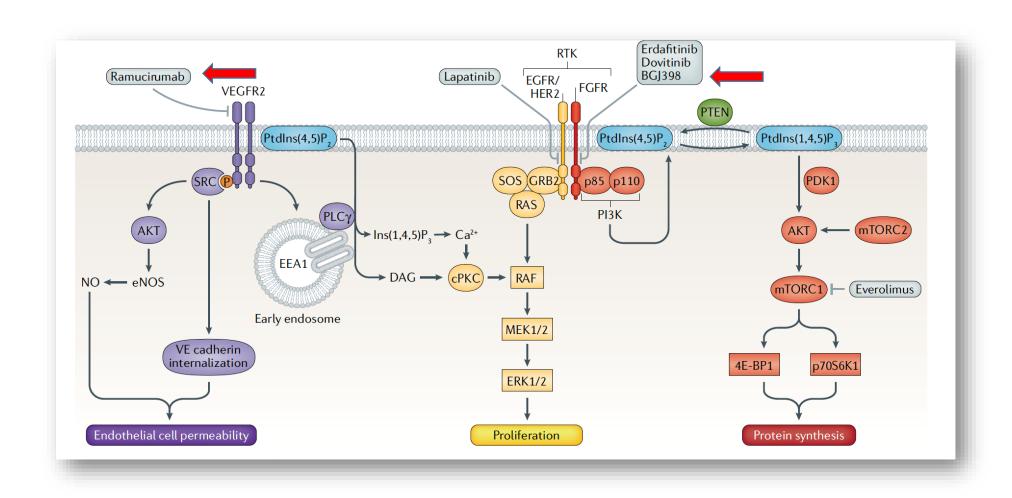
Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers

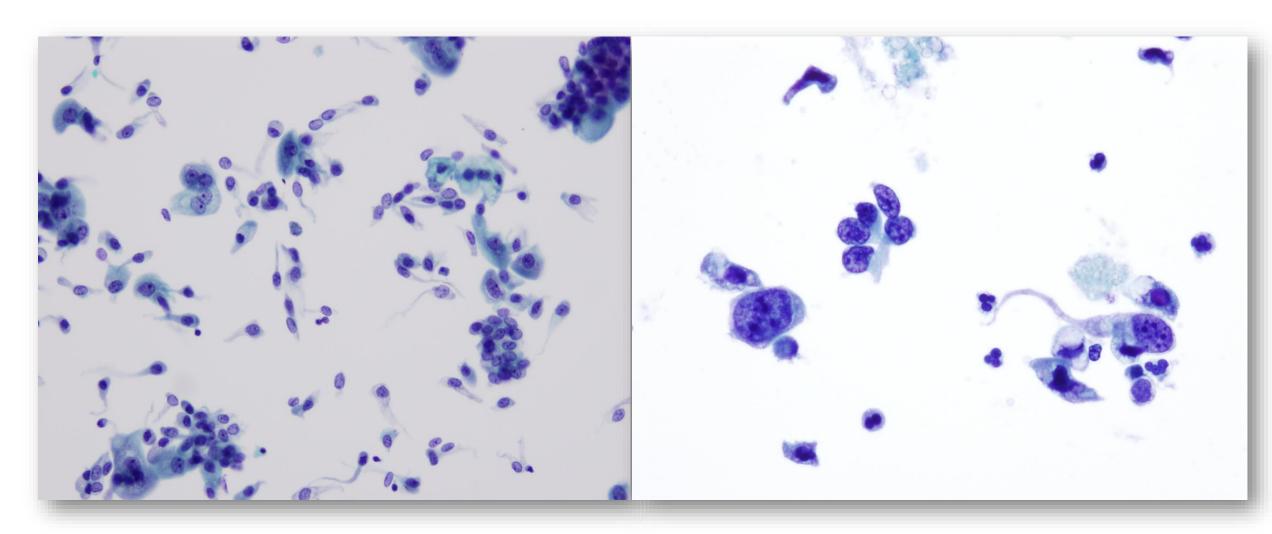

Min Yuen Teo, Kenneth Seier, Irina Ostrovnaya, Ashley M. Regazzi, Brooke E. Kania, Meredith M. Moran, Catharine K. Cipolla, Mark J. Bluth, Joshua Chaim, Hikmat Al-Ahmadie, Alexandra Snyder, Maria I. Carlo, David B. Solit, Michael F. Berger, Samuel Funt, Jedd D. Wolchok, Gopa Iyer, Dean F. Bajorin, Margaret K. Callahan, and Jonathan E. Rosenberg



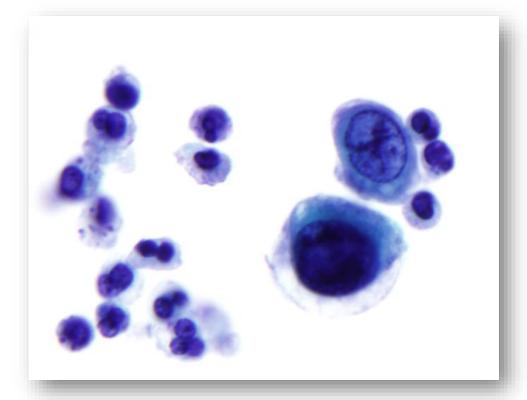
Teo MU et al., JCO 2018

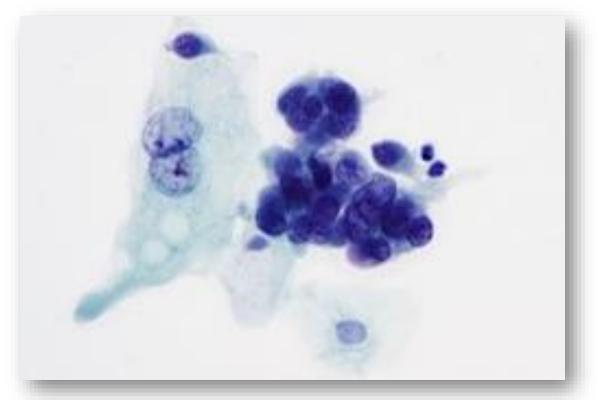
Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers

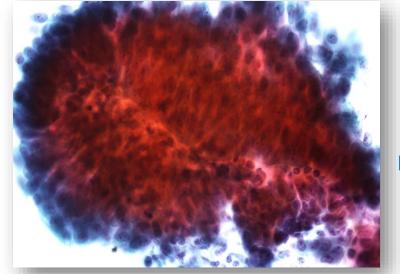

Min Yuen Teo, Kenneth Seier, Irina Ostrovnaya, Ashley M. Regazzi, Brooke E. Kania, Meredith M. Moran, Catharine K. Cipolla, Mark J. Bluth, Joshua Chaim, Hikmat Al-Ahmadie, Alexandra Snyder, Maria I. Carlo, David B. Solit, Michael F. Berger, Samuel Funt, Jedd D. Wolchok, Gopa Iyer, Dean F. Bajorin, Margaret K. Callahan, and Jonathan E. Rosenberg



Teo MU et al., JCO 2018


Targeted Signaling Pathways in Clinical Trials for Advanced BC

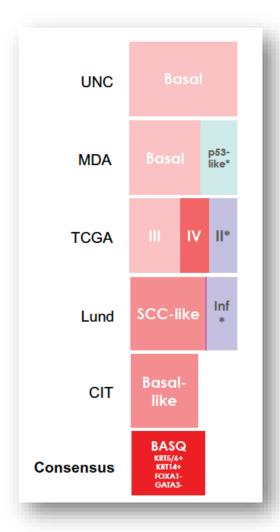



NHGUC

HGUC

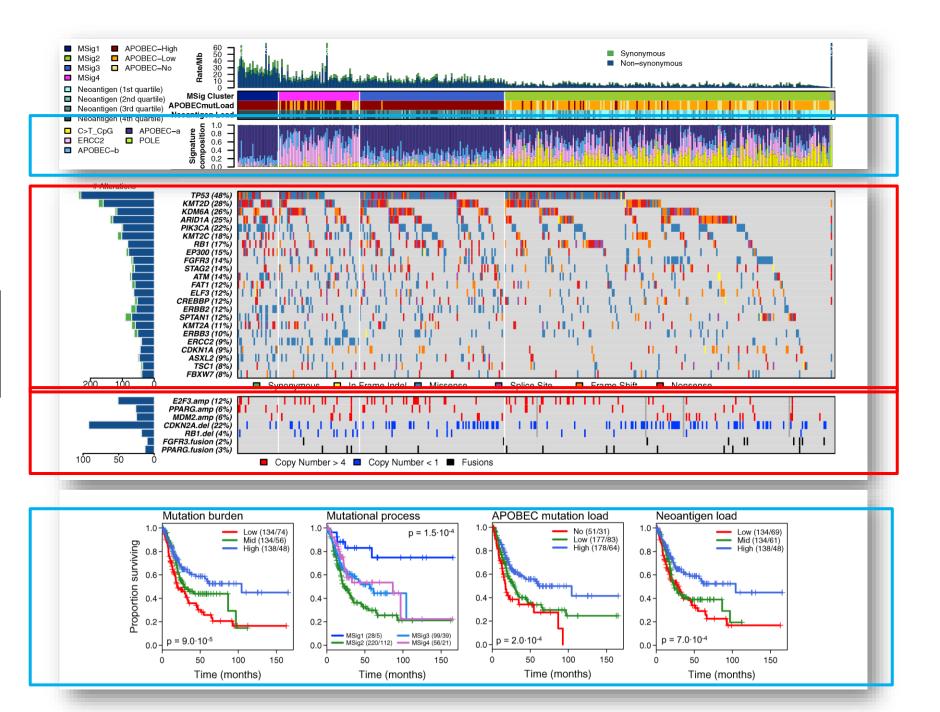
AUC SHGUC

LGUN


Bladder Cancer Molecular Taxonomy: Summary from a Consensus Meeting

Seth P. Lerner^a, David J. McConkey^b, Katherine A. Hoadley^c, Keith S. Chan^d, William Y. Kim^e, François Radvanyi^f, Mattias Höglund^g and Francisco X. Real^{h,*}

therefore, the group reached the consensus conclusion that a


"... subgroup of invasive bladder cancers can be identified as being **KRT5/6(+) KRT14(+)** FOXA1(-) GATA3(-)..."

"... use **Basal/Squamous-like** (proposed acronym, **BASQ**) to designate these tumors..."

Bladder Cancer 2016

TCGA 2017
MIBC Landscape of
Mutational Signatures

Overview

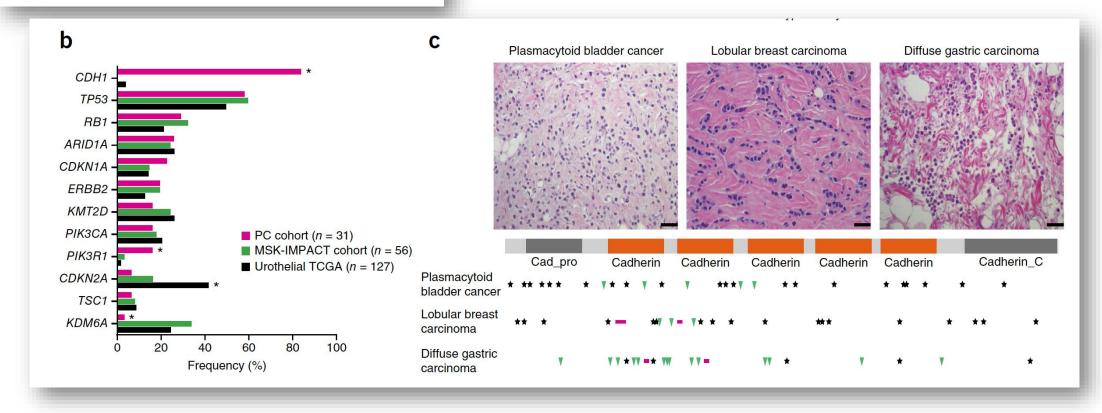
Genomic Advances in Urothelial Carcinoma

- Bladder Cancer TCGA Studies: Genomic Taxonomy
- Immuno-oncology
- Molecular insights into Variants Histology
- UTUC Genomics

Liquid Biopsy

- Early Detection
- Prognostics and Rx Prediction

Computational Advances

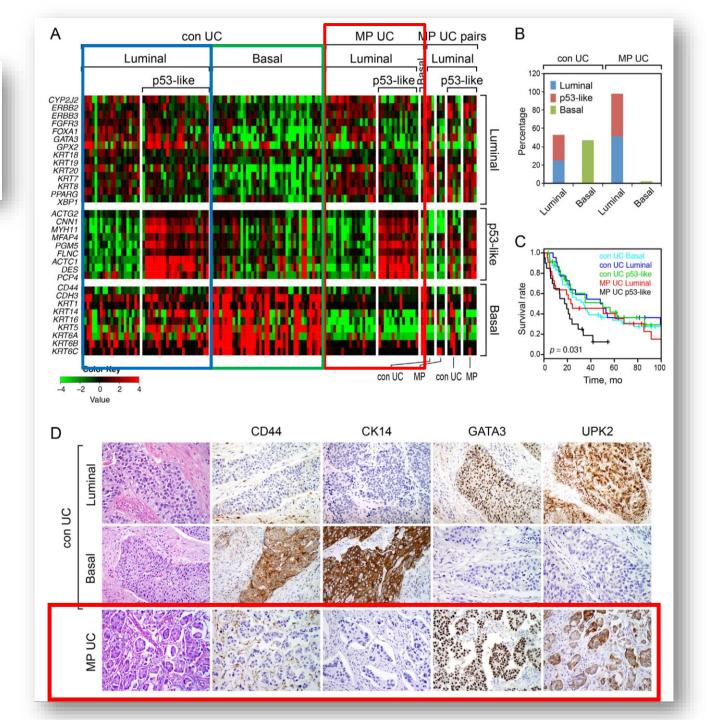

Machine Learning/Al

Frequent somatic *CDH1* loss-offunction mutations in plasmacytoid variant bladder cancer

Hikmat A Al-Ahmadie^{1,11}, Gopa Iyer^{2,3,11}, Byron H Lee^{4,11}, Sasinya N Scott¹, Rohit Mehra⁵, Aditya Bagrodia⁴, Emmet J Jordan³, Sizhi Paul Gao⁶, Ricardo Ramirez^{6,7}, Eugene K Cha⁴, Neil B Desai⁸, Emily C Zabor⁹, Irina Ostrovnaya⁹, Anuradha Gopalan¹, Ying-Bei Chen¹, Samson W Fine¹, Satish K Tickoo¹, Anupama Gandhi¹, Joseph Hreiki¹⁰, Agnès Viale¹⁰, Maria E Arcila^{1,10}, Guido Dalbagni^{2,4}, Jonathan E Rosenberg^{2,3}, Bernard H Bochner^{2,4}, Dean F Bajorin^{2,3}, Michael F Berger^{1,10}, Victor E Reuter^{1,2}, Barry S Taylor^{6,9,10} & David B Solit^{2,3,6,10}

Al-Ahmadie et al Nature Genetic 2016

- Whole-exome/MSK-IMPACT
- CDH1 truncating somatic alterations
- 84% of plasmacytoid ca.

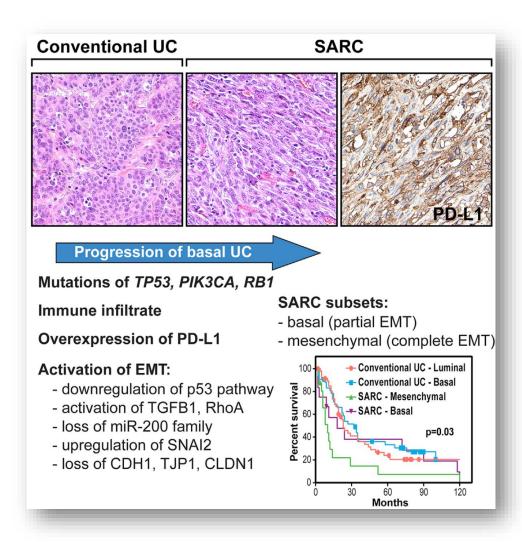


Gene Expression Profile of the Clinically Aggressive Micropapillary Variant of Bladder Cancer

Charles Chuanhai Guo ^{a,†}, Vipulkumar Dadhania ^{a,†}, Li Zhang ^{b,†}, Tadeusz Majewski ^a, Jolanta Bondaruk ^a, Maciej Sykulski ^c, Weronika Wronowska ^d, Anna Gambin ^c, Yan Wang ^a, Shizhen Zhang ^a, Enrique Fuentes-Mattei ^a, Ashish Madhav Kamat ^e, Colin Dinney ^e, Arlene Siefker-Radtke ^f, Woonyoung Choi ^e, Keith A. Baggerly ^b, David McConkey ^e, John N. Weinstein ^b, Bogdan Czerniak ^{a,*}

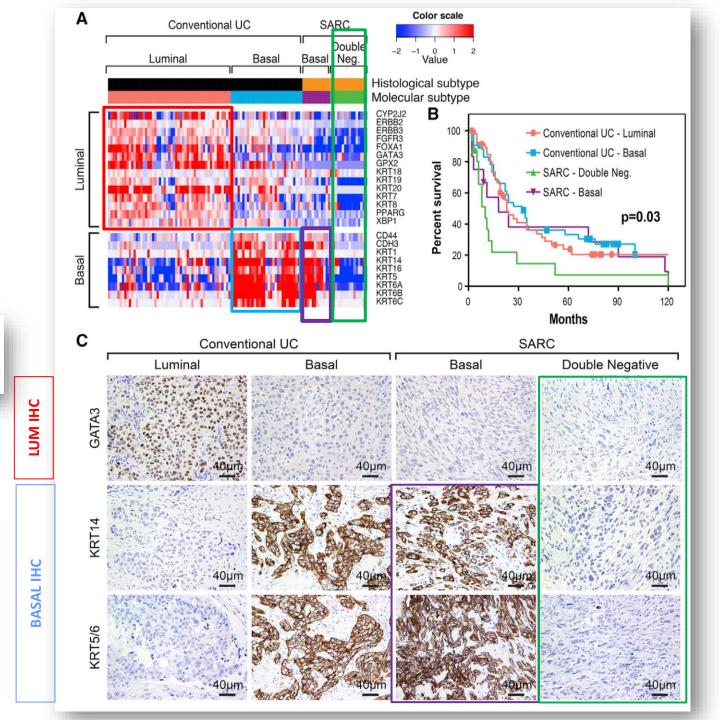
Guo et al 2016 European Urology

- 43 MP-UC; WES
- MP-UC almost exclusively luminal
- Enrichment of **PPARG** and suppression of p63 target genes
- Similar to luminal UrCa; a subset exhibits activation of wild-type p53 downstream genes (p53-Like)
- P53-Like most aggressive molecular subtype of MP-UC



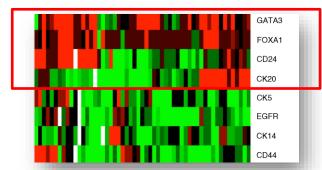
Dysregulation of EMT Drives the Progression to Clinically Aggressive Sarcomatoid Bladder Cancer

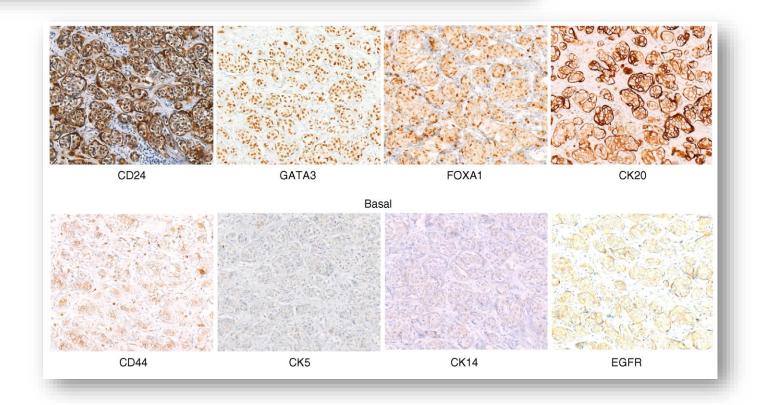
Charles C. Guo,^{1,8} Tadeusz Majewski,^{1,8} Li Zhang,^{2,8} Hui Yao,³ Jolanta Bondaruk,¹ Yan Wang,¹ Shizhen Zhang,¹ Ziqiao Wang,⁴ June Goo Lee,¹ Sangkyou Lee,¹ David Cogdell,¹ Miao Zhang,¹ Peng Wei,⁴ H. Barton Grossman,⁵ Ashish Kamat,⁵ Jonathan James Duplisea,⁵ James Edward Ferguson III,⁵ He Huang,¹ Vipulkumar Dadhania,¹ Jianjun Gao,⁶ Colin Dinney,⁵ John N. Weinstein,³ Keith Baggerly,³ David McConkey,⁷ and Bogdan Czerniak^{1,9,*}


Guo CC et al., Cell Reports 2019

- 28 Sarcomatoid Ca.
- Progression from basal UrCa
- Two subsets: Basal and mesenchymal (most aggressive) subsets (p63)
- Drivers: Dysregulation of cell cycle and EMT networks
- Infiltrated immune phenotype and upregulation of PD-L1

Dysregulation of EMT Drives the Progression to Clinically Aggressive Sarcomatoid Bladder Cancer

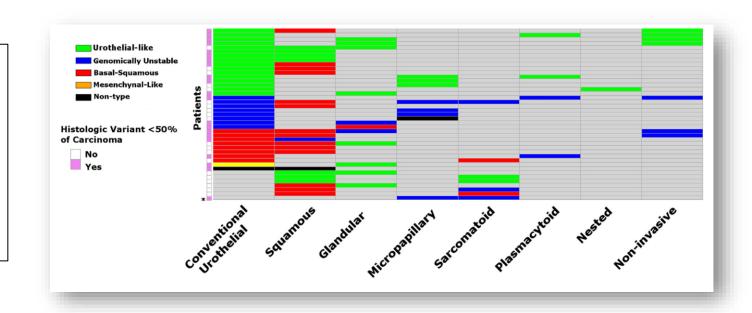

Guo CC et al., Cell Reports 2019



Distinct genetic alterations and luminal molecular subtype in nested variant of urothelial carcinoma

Veronika Weyerer, ^{1,*} Rebecca Weisser, ^{1,*} Evgeny A Moskalev, ¹ Florian Haller, ¹ Robert Stoehr, ¹ Markus Eckstein, ¹ Ulrike Zinnall, ^{1,2} Nadine T Gaisa, ³ Eva Compérat, ⁴ Aurel Perren, ⁵ Bastian Keck, ^{6,7} Yves Allory, ⁸ Glen Kristiansen, ⁹ Bernd Wullich, ⁶ Abbas Agaimy, ¹ Arndt Hartmann ¹ & Simone Bertz ¹

- 60 Nested UrCa
- TERT promoter mutation and NGS panel of 48 genes (in 26 cases)
- 62.5% TERT promoter mutations
- TP53, JAK3 & CTNNB1 most frequently mutated
- All expressed luminal markers



Intratumoral Heterogeneity of Bladder Cancer by Molecular Subtypes and Histologic Variants

Joshua I. Warrick a,b,*, Gottfrid Sjödahl , Matthew Kaag b, Jay D. Raman b, Suzanne Merrill b, Lauren Shuman , Guoli Chen , Vonn Walter d, David J. DeGraff b,

Warrick JI et al, 2018 European Urology

- Molecular heterogeneity is frequent in BC particularly in basal-squamous subtype
- Concerns for sampling representation when guiding Rx

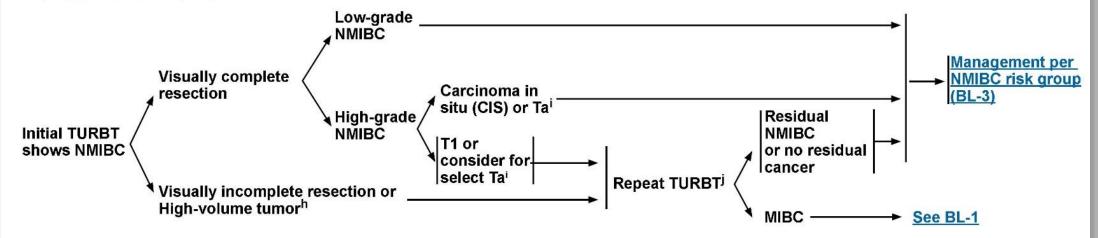
JAMA | Review

Bladder Cancer A Review

Andrew T. Lenis, MD, MS; Patrick M. Lec, MD; Karim Chamie; MD, MSHS

American Urological Association risk group		
Low	Intermediate	High
Definitions		
Low-grade solitary Ta ≤3 cm	Recurrence within 1 y, low-grade Ta	High-grade T1
PUNLMP	Solitary low-grade Ta >3 cm	Any recurrent high-grade Ta
	Low-grade Ta, multifocal	High-grade Ta >3 cm or multifocal
	High-grade Ta ≤3 cm	Any CIS
	Low-grade T1	Any BCG failure in patient with high-grade disease
		Any variant histology
		Any LVI
		Any high-grade prostatic urethral involvement
Outcomes ⁴³		
5-y relapse-free survival: 43%	5-y relapse-free survival: 33%	5-y relapse-free survival: 23%
5-y progression-free survival: 93%	5-y progression-free survival: 74%	5-y progression-free survival: 54%

JAMA. 2020;324(19):1980-1991.

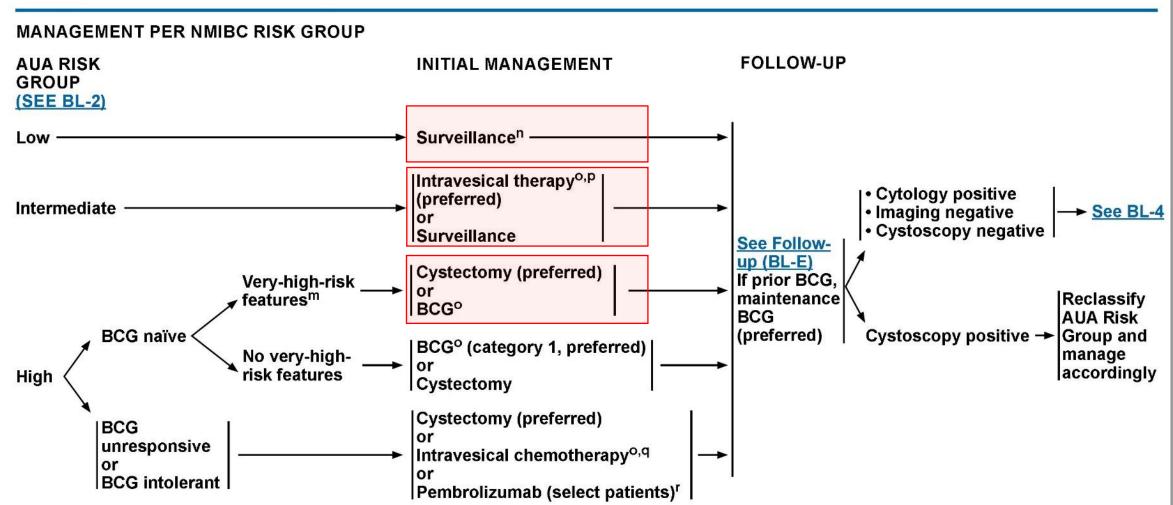

WHO/ISUP System: Potential Advantages

- Acceptance by a broad spectrum of urological pathologists
- Patients with PUNLMP avoid a diagnosis of carcinoma

NCCN Guidelines Version 5.2021 Non-Muscle Invasive Bladder Cancer

NCCN Guidelines Index
Table of Contents
Discussion

RISK STRATIFICATION OF NMIBC


AUA Risk Stratification for Non-Muscle Invasive Bladder Cancer*

Low Risk	Intermediate Risk	High Risk
 Papillary urothelial neoplasm of low malignant potential Low grade urothelial carcinoma Ta and ≤3 cm and Solitary 	 Low grade urothelial carcinoma T1 or >3 cm or Multifocal or Recurrence within 1 year High grade urothelial carcinoma Ta and ≤3 cm and Solitary 	High grade urothelial carcinoma CIS or T1 or S3 cm or Multifocal Very high risk features (any): BCG unresponsivek Variant histologies Lymphovascular invasion Prostatic urethral invasion

Reproduced with permission from Chang SS, Boorjian SA, Chou R, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J Urol 2016;196:1021. *Within each of these risk strata an individual patient may have more or less concerning features that can influence care.

NCCN Guidelines Version 5.2021 Non-Muscle Invasive Bladder Cancer

Imaging

Computed tomography (CT) may be used to assess for extraluminal tumour spread and lymph node staging. Detection of upper urinary tract cancer with CT urography is superior to excretory urography {21512076}. To assess for muscle invasion, multiparametric (mp)-MRI, including diffusion weighted image (DWI) and dynamic contrast enhanced image (DCEI) in addition to T2 weighted image (T2WI) are preferred, as they enable differentiation of submucosal (or lamina propria) tissue from the muscularis propria. The vesical imaging of reporting and data system (VI-RADS) using mp-MRI proposes a five-point scale for staging, which suggests the likelihood of detrusor muscle and extravesical invasion of bladder cancer. T2 WI is defined as first pass images and DWI and DCEI as dominant images {29755006}. This system was tested positively by systematic review and meta-analysis {32199915; 33076505}. Using this system, select patients could avoid unnecessary secondary tumour resection