

Ashish Chandra MD FRCPath DipRCPath (Cytol) MIAC

- Guy's & St Thomas' NHSfT, London, UK
- Lead consultant for Cytopathology & Uropathology
- Past Chairman, British Association of Urological Pathologists (BAUP)
- Vice-President, International Academy of Cytology
- Deputy Editor, Cytopathology
- Special interest in reporting terminologies, clinical guidelines, FNA & ROSE
- Maurice Goldblatt awardee 2022 for international service to cytopathology
- Twitter: AshishC97225686

The Paris System for Reporting Urinary Cytology

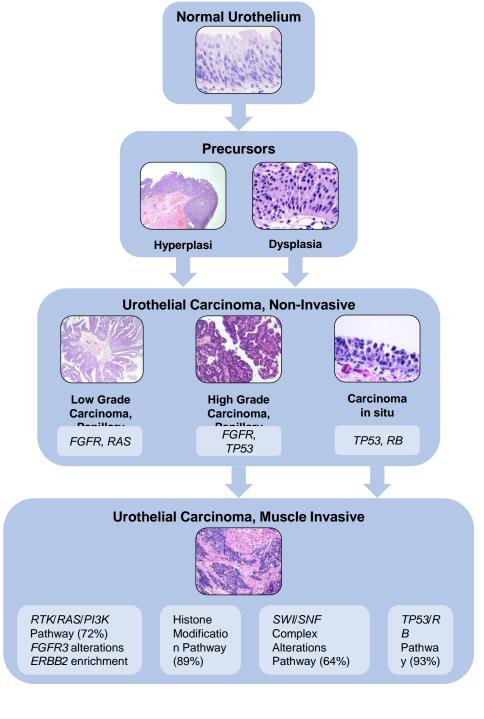
Eva M. Wojcik Daniel F.I. Kurtycz Dorothy L. Rosenthal *Editors*

Second Edition

TPS: the global experience

Dr Ashish Chandra MD FRCPath DipRCPath (Cyto) Guy's & St Thomas' NHSfT, London

TÍ.III.


GUY'S & ST. THOMAS' NHS LONDON, UK

History of urinary cytology performance in detecting urothelial carcinoma

Papilloma	Grade 1		Grade 2		Grade 3			
Papilloma	PUNLMP	Lo	w Grade	High Grade				
WHO/ISUP 2022								
~ 10-20% ~		~5(0-60%		~ 80-90%			
		c		_				

WHO 1973

Sensitivity

TPS 1.0

 The Paris System for Reporting Urinary Cytology (TPS) was first published in 2016 with clear objectives to standardize cytological diagnostic criteria and provide uniform reporting, in order to improve patient stratification and associated clinical management.

Journal of the American Society of Cytopathology Volume 10, Issue 1, January–February 2021, Pages 79-87

Experience on the use of The Paris System for Reporting Urinary Cytopathology: review of the published literature

Ricardo G. Pastorello MD ^{a, b, 1}, Güliz A. Barkan MD ^{c, d, 1}, Mauro Saieg MD, PhD ^{e, f, 1} $\stackrel{\circ}{\sim}$ 🖾

Following adoption of TPS -

- Sensitivity ranged from 40% to 84.7%
- Specificity from 73% to 100%
- PPV from 62.3% to 100%
- NPV from 46% to 90%
- The application of TPS in the selected series has improved the screening and surveillance potential of urine cytology, while reducing high rates of indeterminate diagnoses, improving sensitivity and providing proper risk stratification for patients.

Results of user survey Dec 2020

- A total of 523 participant responses from 55 countries was collected and 451 passed initial screening
- 82% (218/266) of responding participants use TPS
- 168 of people who responded regarding their urinary cytology atypia rates reported an average decrease from 21.6% to 16%
- Of those who use TPS (218) a majority responded that the same criteria should be used for voided and instrumented samples (72%, 158/218) as well as upper and lower urinary tract specimens (78%, 169/218)
- There were varied opinions on addressing atypical squamous cells and suggestions for new features to be included in Paris 2.0

What's new in TPS 2.0 (2022)

- The key changes in the second edition are in the form of more detailed discussion and the addition of numerous new images, sample reports and up-to-date references
- There are new chapters on the upper urinary tract and on Risk of high grade malignancy (ROHM) as a better indicator of clinical outcome than Risk of Malignancy (ROM)

Diagnostic categories in TPS 2.0

The focus remains on high grade urothelial carcinoma!

1. Non-diagnostic or unsatisfactory

2. Negative for high grade urothelial carcinoma

Low grade urothelial neoplasia included here in TPS2.0

3. Atypical urothelial cells

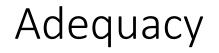
4. Suspicious for high grade urothelial carcinoma

Low grade urothelial neoplasia

5. High grade urothelial carcinoma

6. Other primary and metastatic malignancies & miscellaneous lesions

LGUN included under NHGUC

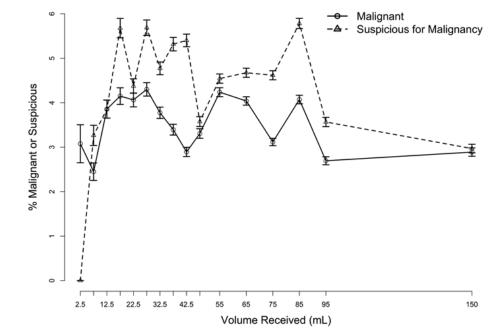

- One of the notable changes is the incorporation of Low Grade Urothelial Neoplasia (LGUN) within the Negative for HGUC (NHGUC) category
- This strengthens the message that the focus of urinary cytopathology is on HGUC while LGUN remains a mainly cystoscopic finding, only occasionally detected on cytology due to their bland appearance and the rare finding of fibrovascular cores
- Specimens where these features are seen should be reported as NHGUC with a comment stating that LGUN is possible and should be confirmed by cystoscopy and biopsy.

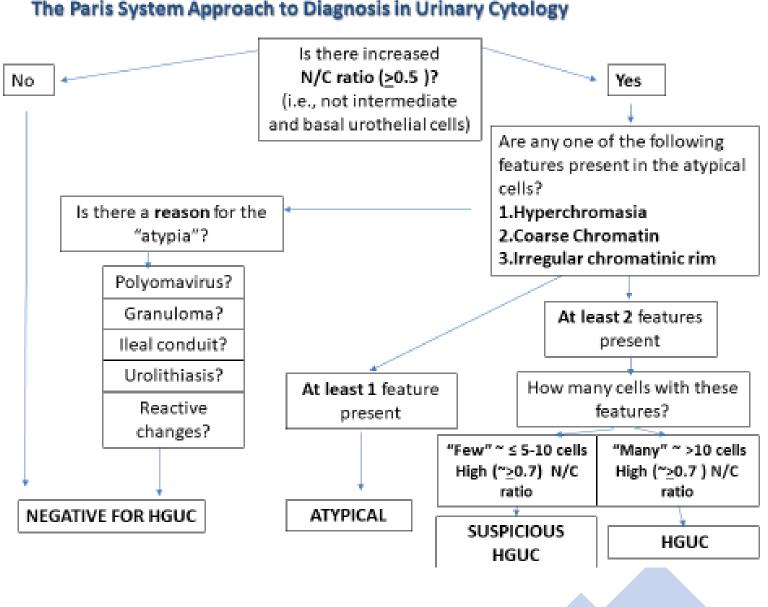
Fibrovascular cores in HGUC

- There is also a clarification offered that fibrovascular cores may also be seen in HGUC and that its established diagnostic criteria should be sought within these cores as well as in other groups and dispersed urothelial cells
- The spectrum of N/C ratios, the observation of hypochromasia, degenerative changes and HGUC sub-types are also covered in this edition

More highlights of TPS2.0

- There is a streamlined discussion of atypical vs. benign-appearing urothelial tissue fragments, further characterization of degenerative changes in benign specimens and updated performance data for the NHGUC category.
- Illustrations of different preparations such as cytospin, ThinPrep and SurePath images have been significantly increased.
- Cytopreparatory methods including the role of cell blocks in selected cases have also been addressed.

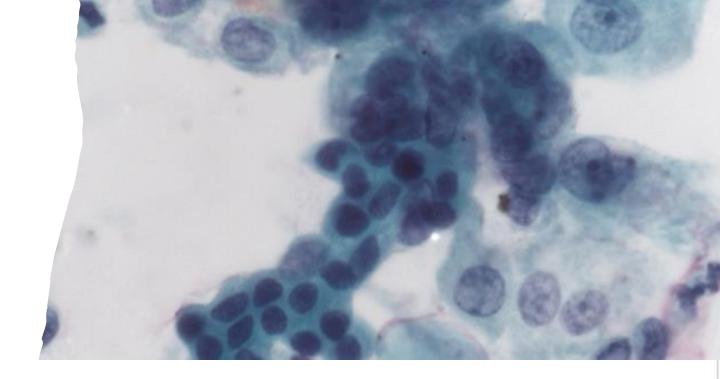



The adequacy of urine specimens for the diagnosis of urothelial carcinoma is determined by the interplay of four specimen characteristics:

- Collection type- voided, catheterized, cystoscopy, upper tract
- Cellularity
- Volume
- Cytomorphological findings

Adequacy: cellularity and volume

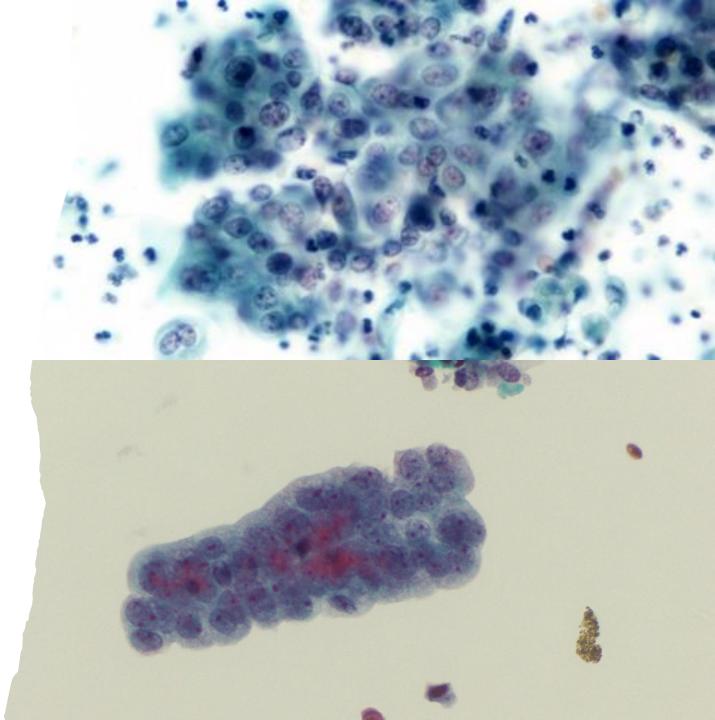
- Volume: 30ml for SurePath; 25ml for ThinPrep
- Cellularity: urothelial cells present in variable numbers in voided urine
- 20 urothelial cells/10hpf in bladder washings on ThinPrep (10-20 suboptimal; <10 non-diagnostic)

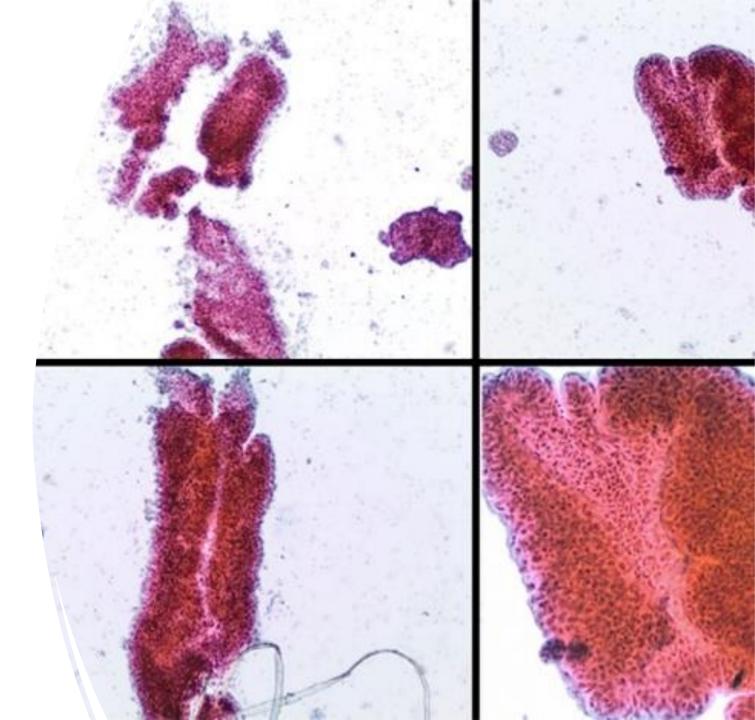


The Paris System Approach to Diagnosis in Urinary Cytology

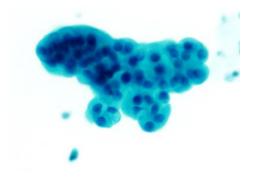
N:C 0.3 0.4 0.5 0.6 0.7 0.8

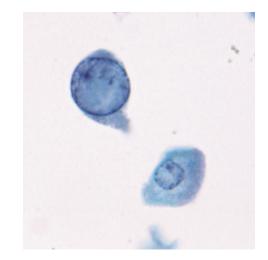
• Negative for HGUC (NHGUC)


- Normal urothelial cells
- Non-degenerated
- Non-superficial
- No deep hyperchromasia
- N:C ratio < 0.5 but taking basal cells into account


Reactive Urothelial Cells (NHGUC)

- Uniform size
- Fine chromatin
- Round nuclei
- Smooth borders
- Small nucleoli

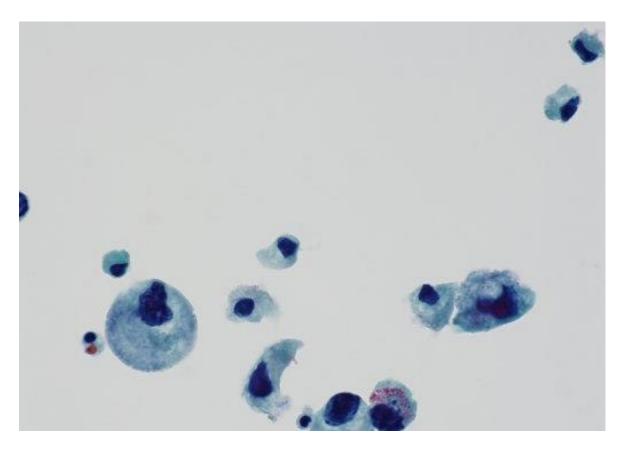


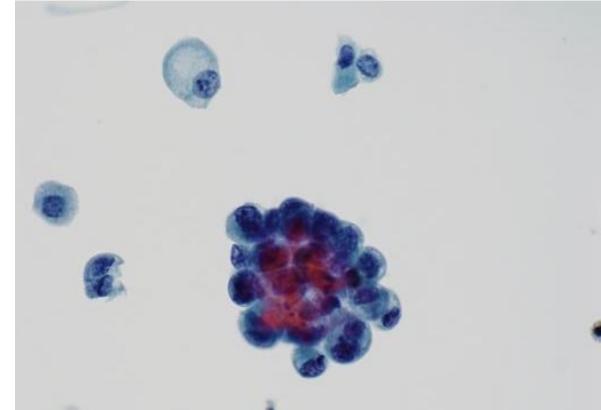

Low grade urothelial neoplasm (LGUN) included under NHGUC

- Papillary structures with fibrovascular cores
- Cell blocks may be helpful
- Diagnosis of LGUN may be suggested in correlation with cystoscopic and biopsy findings

- NOT ATYPIA! Report as negative for HGUC
- Reactive urothelial cells
- "Degenerative" changes
- True tissue fragments
- Changes 2⁰ stones
- Viral cytopathic effect eg. Polyoma virus
- Post-Rx for bladder cancer esp. BCG
- Post-Rx for pelvic malignancies
- Systemic chemotherapy
- Enteric epithelium, conduits & neobladders
- Seminal vesicle cells

Non-superficial and non-degenerated urothelial cells with a high N/C ratio > 0.5 (required)


and one of the following:


Criteria for Atypia

Hyperchromasia (compared to the umbrella cells or the intermediate squamous cell nucleus)

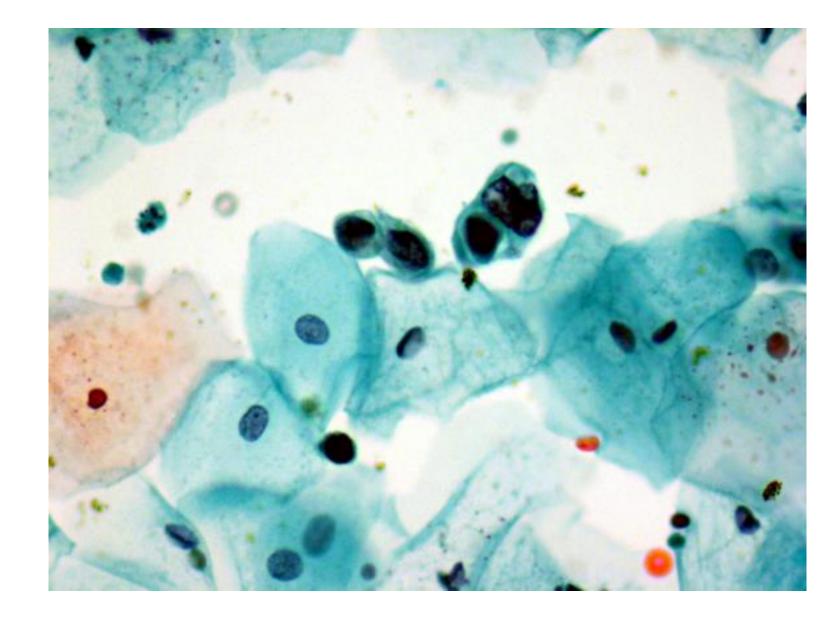
Irregular clumped chromatin

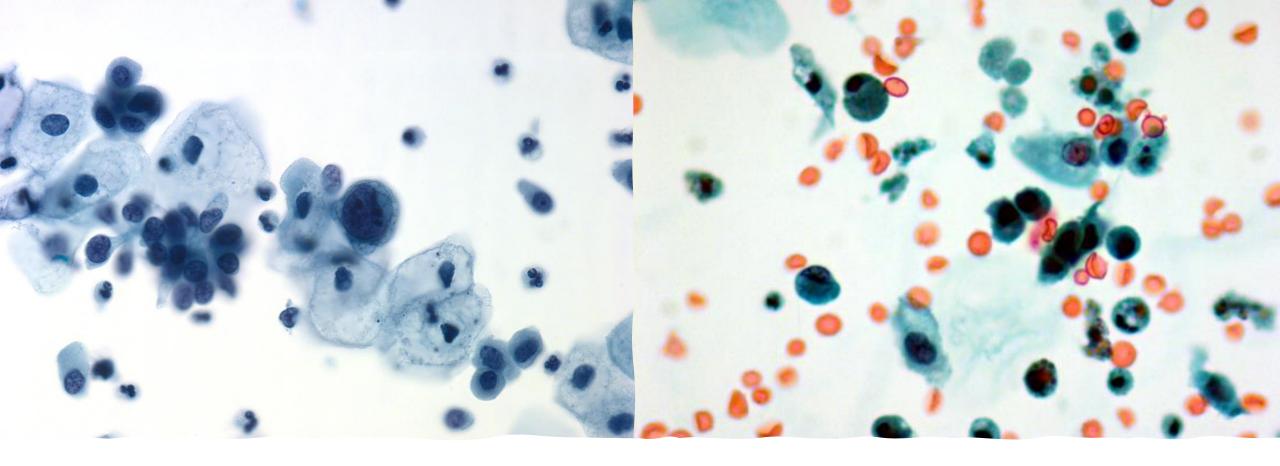
Irregular nuclear membranes

Atypia

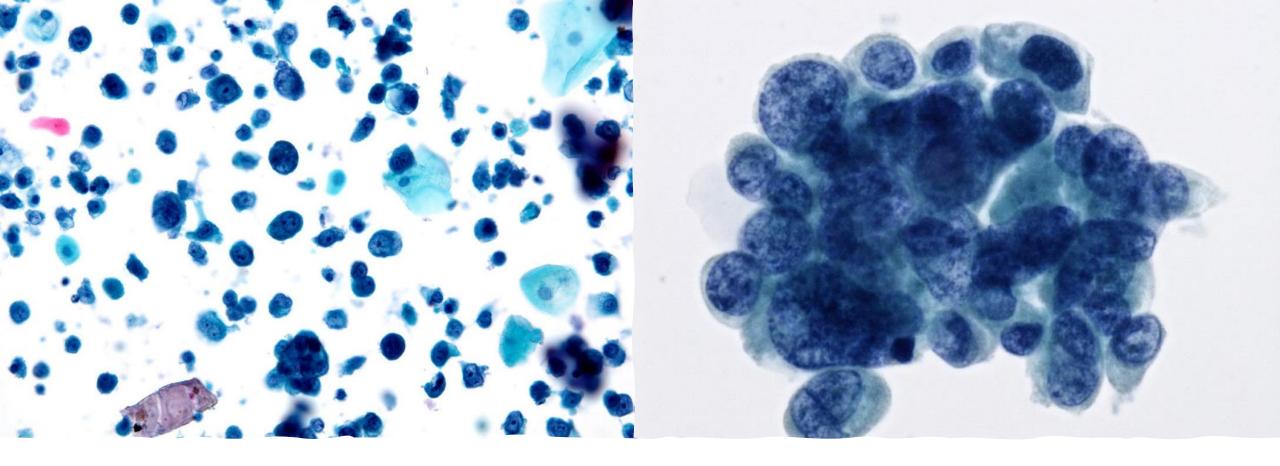
Non-superficial and non-degenerated urothelial cells with a high **N/C ratio > 0.7 (required)**

Hyperchromasia (compared to the umbrella cells or the intermediate squamous cell nucleus) (required)

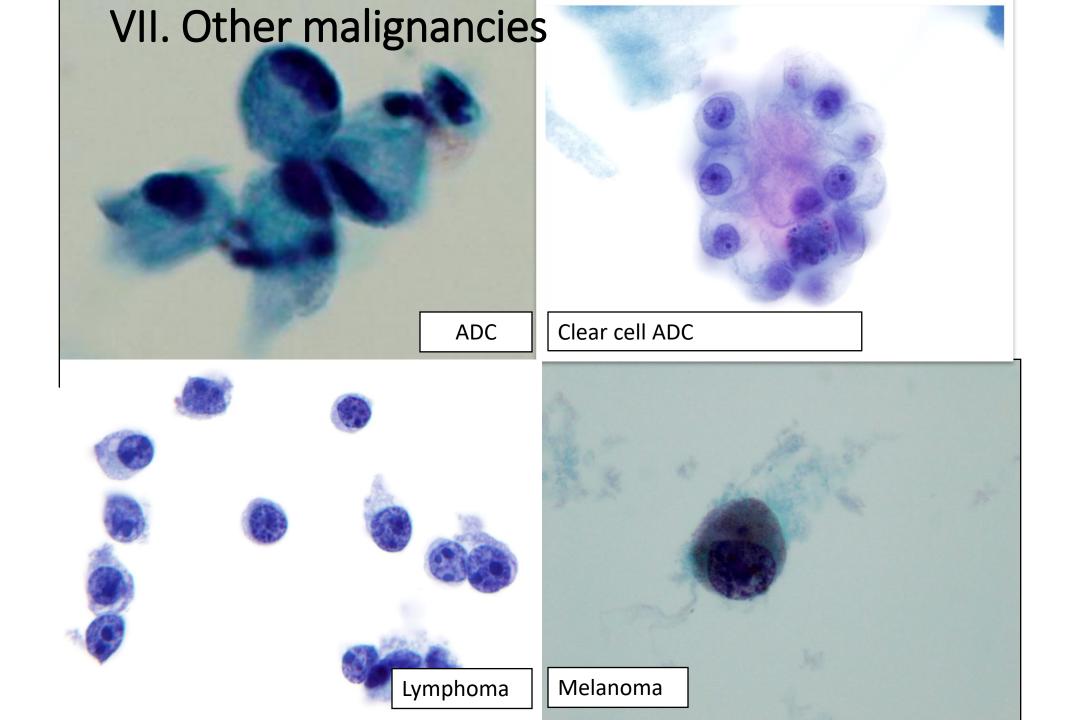

and one of the following:


Irregular clumpy chromatin

Irregular nuclear membranes


Suspicious for HGUC

Suspicious for HGUC


Suspicious for HGUC

HGUC

VI. High grade urothelial carcinoma (HGUC)

- The number of atypical urothelial cells is an important criterion to classify urine cytology specimens into the 'positive' or the 'suspicious' categories.
- A cut off number of >10 cells to render a definitive diagnosis of HGUC seems valid from the clinical standpoint

Correlation with histology

Bertsch EC, Siddiqui MT, Ellis CL. The Paris system for reporting urinary cytology improves correlation with surgical pathology biopsy diagnoses of the lower urinary tract. Diagnostic Cytopathology. 2018;00:1–7

20% of mismatch between HGUC vs LGUN on histology and cytology can be due to overcall on histology. Lee et al 2016 Diagn Cytol

Diagnostic category	Diagnostic criteria	Example	Frequency	ROHM
Unsatisfactory	Voided urine – volume (>30ml) Instrumented urine - cellularity		0% - 5%	0% - 16%
Negative for High Grade Urothelial Carcinoma (NHGUC)	Benign urothelial, glandular, squamous cells, benign tissue fragments, changes due to instrumentation, lithiasis, polyoma virus, therapy. Low Grade Urothelial Neoplasm (LGUN)		70% - 90%	8% - 24%
Atypical Urothelial Cells (AUC)	Required – increased N/C ratio (≥ 0.5) and one of: Hyperchromasia, Irregular clumpy chromatin or Irregular nuclear contours		5% - 15%	24% - 53%
Suspicious for High Grade Urothelial Carcinoma (SHGUC)	Required – Few cells (< 5-10) with high N/C ratio (> 0.7) and hyperchromasia, and/or Irregular clumpy chromatin, Irregular nuclear contours		0.5% - 3%	59% - 94%
Positive for High Grade Urothelial Carcinoma (HGUC)	Required – Many cells (>10) with high N/C ratio (> 0.7) and hyperchromasia, Irregular clumpy chromatin, Irregular nuclear contours		0.1% - 3%	76% -100%

ROHM – Risk of High Grade Malignancy

TPS: a continuing success story ...

- High clinical impact globally due to urine being a common specimen type
- Applicability across samples from the lower and upper urinary tract
- Useful advice to clinicians and patients on the volume of sample required
- Adaptability across conventional cytology as well as LBP
- Impact on reducing the Atypia category and improving its performance
- Correlates well with histology and ancillary tests
- Refers to low grade tumours as neoplasm rather than carcinoma
- Include in curriculum trainees like a uniform approach to good report writing

References

Reynolds JP, Voss JS, Kipp BR, Karnes RJ, Nassar A, Clayton AC, Henry MR, Sebo TJ, Zhang J, Halling KC. Comparison of urine cytology and fluorescence in situ hybridization in upper urothelial tract samples. Cancer Cytopathol. 2014 Jun;122(6):459-67

Dimashkieh H, Wolff DJ, Smith TM, Houser PM, Nietert PJ, Yang J. Evaluation of urovysion and cytology for bladder cancer detection: a study of 1835 paired urine samples with clinical and histologic correlation. Cancer Cytopathol. 2013 Oct;121(10):591-7.

Rosenthal DL, Vandenbussche CJ, Burroughs FH, Sathiyamoorthy S, Guan H, Owens C. The Johns Hopkins Hospital template for urologic cytology samples: part I-creating the template. Cancer Cytopathol. 2013 Jan;121(1):15-20.

References

- VandenBussche CJ, Sathiyamoorthy S, Owens CL, Burroughs FH, Rosenthal DL, Guan H. The Johns Hopkins Hospital template for urologic cytology samples: parts II and III: improving the predictability of indeterminate results in urinary cytologic samples: an outcomes and cytomorphologic study. Cancer Cytopathol. 2013 Jan;121(1):21-8.
- Owens CL, Vandenbussche CJ, Burroughs FH, Rosenthal DL. A review of reporting systems and terminology for urine cytology. Cancer Cytopathol. 2013 Jan;121(1):9-14.
- Rezaee N, Tabatabai L and Olson M. Adequacy of voided urine specimens prepared by ThinPrep and evaluated using The Paris System for Reporting Urinary Cytology. JASC Volume 6, Issue 4, Pages 155–161
- The Cancer Genome Atlas Research Network, Analysis working group: The University of Texas MD Anderson Cancer Center. Comprehensive molecular characterization of urothelial bladder carcinoma. *Nature*. 2014;507(7492):315-322. doi:10.1038/nature12965 (see diagram on next slide)

References

- 1. The Paris system for reporting urinary cytology. New York, NY: Springer Science+Business Media, 2015
 - 2. Barkan GA, Wojcik EM, Nayar R, et al. The Paris System for Reporting Urinary Cytology: the quest to develop a standardized terminology. J Am Soc Cytopathol. 2016;5: 177-188.
- 3. Barkan GA, ElSheik T, Kurtycz DF, et al. Atypical Urothelial Cells. In: Rosenthal DL, Kurtycz DF, Wojcik E, editors. The Paris System for reporting urinary Cytology: Springer, 2016:39-48.
 - 4. Kurtycz DFI, Sundling KE, Barkan GA. The Paris system of Reporting Urinary Cytology: Strengths and opportunities. Diagn Cytopathol. 2020.
- 5. Stanzione N, Ahmed T, Fung PC, et al. The continual impact of the Paris System on urine cytology, a 3-year experience. Cytopathology. 2020;31: 35-40.
- 6. Torous VF, Brancely D, VanderLaan PA. Implementation of the Paris System for Reporting Urinary Cytology results in lower atypical diagnostic rates. J Am Soc Cytopathol. 2017;6: 205- 210.

The global experience

Original articles focusing on the utilization and performance of TPS in urinary cytology specimens were identified using PubMed for publications from January 2016 to July 2020

23 relevant articles in the literature regarding the use of TPS were included in the review from a total of 30,802 urine cytology specimens, of which 21,485 (69.8%) had available diagnoses Data from 23 articles that included at least 100 cases were analysed using SPSS software

- 10 from the United States
- 5 from India
- 2 from Canada
- 1 each from Brazil, France, Iran, South Korea, Spain and Switzerland
- 18 studies reported the distribution of cytology diagnoses both before and after TPS, allowing for comparison
- 11 studies had histological follow up within 17 months

	Type of	Preparation type	Country	Number of cases	Pre and Post-TPS % (n)								
	samples				NM	NHGUC	Atypical	AUC	SM	SHGUC	M/HGUC	HGUC	
Stanzione et al., 2020* ⁵	V/I	LBP	USA (Los Angeles)	381 (87 Pre- and 294 Post-TPS†)	2.3 (2)	42.5 (125)	59.8 (52)	41.5 (122) ‡	19.5 (17)	3 (9)	18.4 (16)	12.9 (38)	
Anbardar et al., 2020 ²	v	ст	Iran	1842§	1732	95.3 (1757)	26	1.2 (22)	20	1.1 (20)	33	2.2 (41)	
Vosoughi et al., 2020 ³⁵	V/I	ст	USA (Miami)	2192 (1588 Pre- and 604 Post-TPS)	80 (1244)	86 (519)	16 (249)¶	9 (56)	3 (47)	2 (12)	1 (18)	3 (17)	
Compton et al., 2019 ⁹	V/I	LBP	USA (Nashville)	1585#	-	80.4 (1275)	-	12.5 (199)	-	3.1 (49)	-	3.3 (51)	
de Paula et al., 2019 ¹⁰	V/I	LBP	Brazil	1660	-	87.1 (1446)	-	4.6 (78)	-	2.7 (45)	-	2.7 (46)	
Vlajnic et al., 2019 ³⁴	V/I	ст	Switzerland	3900	-	89.7 (3496)		4.6 (178)	-	1.6 (61)	-	4 (155)	
Bakkar et al., 2019* ³	V/I	LBP	USA (Los Angeles)	100	26 (26)	54 (54)	44 (44)	23 (23)	11 (11)	9 (9)	19 (19)	14 (14)	
Rai et al., 2019* ²⁵	v	ст	India	90	46.7 (42)	52.2 (47)	16.7 (15)	11.1 (10)	20 (18)	17.8 (16)	14.4 (13)	11.1 (10)	
Vallamreddy et al., 2019* ¹⁸	NS	ст	India	74	2.7 (2)	8.1 (6)	21.6 (16)	9.5 (7)	Δ	24.3 (18)	47.3 (35)	35.1 (26)	
VandenBussche et al., 2018 ³²	V/I	LBP/CT	USA (Baltimore)	4939 (2376 Pre- and 2563 Post-TPS)	64.9 (1543)	66.1 (1695)	23.9 (568)	23.0 (589)	5.8 (138)	4.5 (115)	3.8 (90)	5.0 (127)	
Meilleroux et al., 2018 ²⁰	V/I	ст	France	3448 (1634 Pre- and 1814 Post-TPS)	82 (1340)	83.2 (1510)	6.1 (100)	5.2 (94)	0.7 (12)	2.1 (38)	4.5 (73)	4.7 (85)	
Wang et al., 2018 ³⁵	V/I	LBP/CT	Canada	4764 (2371 Pre- and 2393 Post-TPS)	75.4 (1788)	80.1 (1917)	18.6 (442)	14.4 (345)	3 (70)	2.4 (57)	3 (71)	3.2 (73)	
Xing et al., 2018* ³⁷	NS	NS	USA (Pittsburgh)	300 (151 Pre- and 150 Post-TPS)	40 (60)	55 (82)	34 (52)	24 (37)	15 (23)	10 (15)	7 (11)	9 (14)	
Rohilla et al., 2018 ²⁷	v	ст	India	1345	78.1 (1050)	76 (1022)	54.3 (73)	8.5 (114)	1.6 (22)	0.2 (3)	13.8 (186)	14.1 (189)	
Zare et al., 2018* ³⁸	V/I	LBP	USA (San Diego)	194	58.8 (114)	67.5 (131)	24.2 (47)	11.9 (23)	2.1 (4)	5.7 (11)	13.4 (26)	13.9 (27)	
Simon et al., 2018*◊ ¹³	1	NS	USA (Ann Arbor)	61	18 (11)	18 (11)	31 (19)	29 (18)	26 (16)	36 (22)	25 (15)	17 (10)	
Torous et al., 2017 ⁶	V/I	LBP	USA (Boston)	2495 (1111 Pre- and 1384 Post-TPS)	64.3 (714)	70.7 (979)	29.5 (328)	21.8 (302)	3.3 (37)	4.4 (61)	2.9 (32)	3 (42)	
Granados et al., 2017* ²⁶	v	LBP	Spain	149	69.8 (104)	51 (149)	4.7(7)	20.1 (30)	11.4 (17)	8.1 (12)	14.1 (21)	20.8 (31)	
Suh et al., 2017* ²⁵	1	LBP	Korea	142	48.6 (68)	36.6 (52)	25.4 (36)	14.8 (21)	12.7 (18)	31 (44)	14.1 (20)	17.6 (25)	
Rezaee et al., 2017 ²⁶	v	LBP	USA (Baltimore + San Francisco)	744	-	64 (476)	-	14.2 (106)	-	6.6 (49)		11.3 (84)	
Malviya et al., 2017 ¹⁷	V/I	ст	India	176	-	50.5 (89)	-	5.1 (9)	-	3.9 (7)	-	13 (23)	
Roy et al., 2017* ¹⁷	v	ст	India	97	19.6 (19)	6.2 (6)	41.2 (40)	11.3 (11)	-	9.3 (9)	34 (33)	49.5 (48)	
Hassan et al., 2016* ²⁰	V/I	LBP/CT	Canada	124	21.8 (27)	36.3 (45)	38.7 (48)	25.8 (32)	18.5 (23)	14.5 (18)	20.1 (26)	23.4 (29)	
Mean**				73.9	80.9	23.2	10.4	3.1	2.6	4.5	4.7		

Table 1. Distribution of diagnostic categories before and after the implementation of TPS across included studies.

Distribution of cases among categories ranged from -

- 50.5 to 95.3% for negative for high-grade urothelial carcinoma (NHGUC)
- 1.2 to 23% for atypical urothelial cells (AUC)
- 0.2 to 6.6% for suspicious for high grade urothelial carcinoma (SHGUC)
- 2.2 to 14.1% for high-grade urothelial carcinoma (HGUC)

across included studies

Author year	Number of cases with	ROHM Pre- and Post-TPS (%)									
Author, year	available histology	NM	NHGUC	Atypical	AUC	SM	SHGUC	M/HGUC	HGUC		
Stanzione et al., 2020 ⁵	381 (87 Pre- and 294 Post-TPS)	0	14.4	40.4	44.3*	76.5	88.9	93.8	97.4		
de Paula et al., 2019 ²²	499	-	11		32.6	-	80	-	92.3		
Bakkar et al., 2019 ¹⁰	100	15.4	29.7	43.2	60.9	100	100	100	100		
Wang et al., 2018 ²¹	355 (188 Pre- and 167 Post-TPS)	20.3	17.7	29.6	50	81.5	76.4	89.4	89.1		
Meilleroux et al., 2018	629 (330 Pre- and 229 Post-TPS)	7.3	8.7	28.2	49	83.3	87	89.4	91		
Xing et al., 2018 ⁹	300 (151 Pre- and 150 Post-TPS)	17	27	54	59	78	93	91	100		
Rohilla et al., 2018 ¹⁶	244	15.6	11.6	25	12.3	44.4	33.3	†	58.8		
Zare et al., 2018 ⁸	194	12.3	9.9	23.4	17.4	50	72	92	96.3		
Suh et al., 2017 ²⁵	142	19.1	13.5	38.9	38.1	66.7	59.1	95	68		
Granados et al., 2017 ²⁶	149	37.5	36.8	71.4	40	64.7	75	100	87.1		
Hassan et al., 2016 ²⁰	124	25.9	17.8	33.3	53.1	91.3	83.3	96.2	100		
Mea	16.4	15.7	36.2	38.5	71.5	76.2	90.5	88.8			

TPS: The Paris System for Reporting Urine Cytology; ROHM: risk of high-grade malignancy; NM: negative for malignancy (pre-

TPS); SM: suspicious for malignancy (pre-TPS); M/HGUC: malignant/high-grade urothelial carcinoma (pre-TPS); NHGUC: negative

The calculated risk of high-grade malignancy (ROHM) ranged from-

- 8.7 to 36.8% for NHGUC
- 12.3 to 60.9%% for AUC
- 33.3 to 100% for SHGUC
- 58.8 to 100 % for HGUC

Author year	Pre- and Post-TPS (%)											
Author, year	n	Sensitivity	Sensitivity	Specificity	Specificity	PPV	PPV	NPV	NPV	Accuracy	Accuracy	
Bakkar et al., 2019* ¹⁰	100	38	43	100	100	100	100	58	61	66	70	
de Paula et al., 2019 ²²	449	-	40	-	99.3	- ~	92.3	-	88.2	-	-	
Meilleroux et al., 2018 ²³	559 (330 Pre- and 229 Post-TPS)	82.5	84.7	94.3	92.1	92.2	91	89.1	86.4	-	-	
Zare et al., 2018* ⁸	194	72.5	74.5	72	83.9	48	62.3	88	90	74	81.4	
Granados et al., 2017* ²⁶	149	49	63	91	73	93	84	42	46	-	-	
Rohilla et al., 2018 ¹⁶	244	66.3	-	82.9	-	95.2	-	32.2	-	69	-	
Suh et al., 2017* ²⁵	142	59.4	70.8	98.2	84.9	95	68	80.9	86.5	-	-	

Table 3. Diagnostic test parameter calculated before and/or after the implementation of TPS across included studies.

TPS: The Paris System for Reporting Urine Cytology; PPV: positive predictive value; NPV: negative predictive value.

*The same specimens were used to calculate diagnostic accuracy measure before and after implementation of TPS.

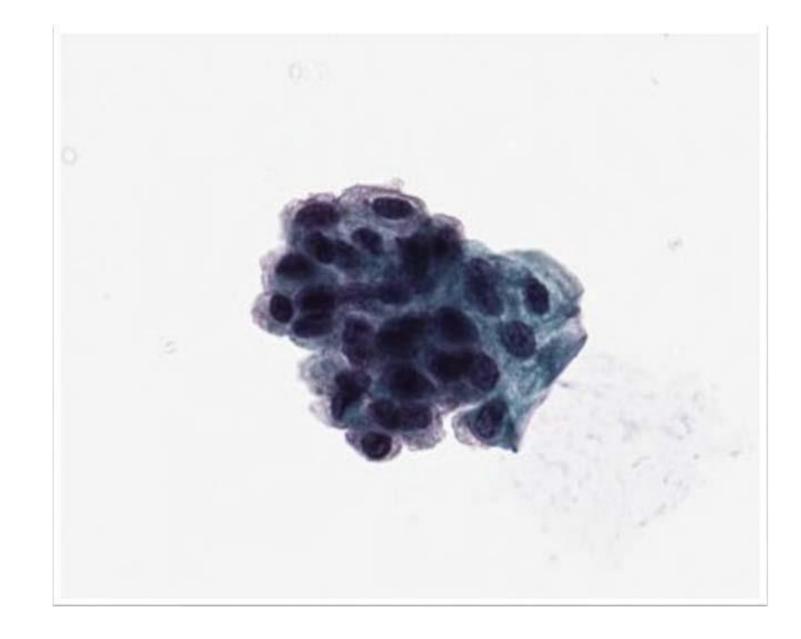
	Number of cases	TPS categories % (n)							
Author, year	with histologic diagnosis of LGUN	NHGUC	AUC	SHGUC	HGUC	LGUN			
Stanzione et al., 2020 ⁵	58	41.4 (24)	56.9 (33) *	1.7 (1)	0 (0)	*			
Anbardar et al., 2020 ²⁴	22	4.5 (1)	18.2 (4)	31.8 (7)	40.9 (9)	4.5 (1)			
de Paula et al., 2019 ²²	88	93.2 (82)	4.5 (4)	0 (0)	2.3 (2)	0 (0)			
Vallamreddy et al., 2019 ¹⁸	32	18.8 (6)	21.9 (7)	6.3 (2)	0 (0)	53.1 (17)			
Rai et al., 2019 ¹⁵	16	37.5 (6)	12.5 (2)	25 (4)	0 (0)	25 (4)			
Wang et al., 2018 ²¹	46	69.6 (32)	23.9 (11)	4.3 (2)	2.2 (1)	†			
Meilleroux et al., 2018 ²³	62	72.6 (45)	16.1 (10)	1.6 (1)	0 (0)	8.1 (5)			
Xing et al., 2018 ⁹	27	85.2 (23)	14.8 (4)	0 (0)	0 (0)	0 (0)			
Zare et al., 2018 ⁸	52	80.8 (42)	9.6 (5)	3.8 (2)	1.9 (1)	3.8 (2)			
Roy et al., 2017 ¹⁷	34	14.7 (5)	23.5 (8)	5.9 (2)	11.8 (4)	29.4 (10)			
Granados et al., 2017 ²⁶	40	60 (24)	25 (10)	7.5 (3)	7.5 (3)	0 (0)			
Malviya et al., 2017 ¹⁹	5	40 (2)	20 (1)	20 (1)	20 (1)	0 (0)			
Suh et al., 2017 ²⁵	27	33.3 (9)	11.1 (3)	37 (10)	18.5 (5)	0 (0)			
Hassan et al., 2016 ²⁰	25	72 (18)	28 (7)	0 (0)	0 (0)	0 (0)			
Mean‡)	59.8	20.4	6.5	4.9	9.1			

Table 4. Distribution of TPS categories initially assigned to cases ultimately reported as LGUN on histology

TPS: The Paris System for Reporting Urine Cytology; LGUN: low-grade urothelial neoplasm; ND/U: nondiagnostic/unsatisfactory; NHGUC: negative for high-grade urothelial carcinoma: AUC: atypical urothelial cells; SHGUC: suspicious for high-grade urothelial carcinoma; HGUC: high-grade urothelial carcinoma

LGUN

- Only three series in the literature reported more than ten LGUN cytology cases with histological follow-up within their cohorts
- In these series, the risk of low-grade neoplasm (RLGN) associated with this cytologic diagnosis was actually high, ranging from 45.5 to 100% (weighted mean = 78.1% ± 22.3%)
- Fourteen studies had available cytological data for cases ultimately reported as LGUN on surgical specimens, a total of 534 cases
- The distribution of TPS categories initially assigned to these cases consisted primarily of NHGUC
- These data support the decision of TPS to include any diagnosis of LGUN within the NHGUC category as a secondary diagnosis


More highlights of TPS2.0

- Significant changes in clinical guidelines for microscopic haematuria and reflex testing of atypical urine cytology as well as the expansion of surgical investigative techniques have been contributed to the book by the urologist co-authors
- TPS2.0 honours the late Dr Stefan Pambuccian through a touching tribute by the editors and by the inclusion of a chapter on the history of urinary cytology, one of his many illuminating works

Genetics and further research

- The Cancer Genome Atlas molecular characterization has been incorporated into the pathogenesis of low-grade and high-grade urothelial carcinomas
- There is a literature review on ancillary testing including new markers and assays including recent data on ancillary testing in the era of TPS and a new section on next-generation sequencing (NGS) in urinary cytology
- A number of research questions have been listed from all areas of urinary cytopathology in a separate section of the book and should provide ideas for suitable projects that may be of interest and relevance to clinical practice

Atypia

