

Update on Endometrial Carcinoma HK IAP 2022

Diana Lim (diana_gz_lim@nuhs.edu.sg)

Senior Consultant

Department of Pathology, National University Hospital, Singapore

Global Cancer Incidence in Women

Rank	Cancer	New cases in 2020	% of all cancers
	All cancers*	8,751,759	
1	Breast	2,261,419	25.8
2	Colorectal **	865,630	9.9
3	Lung	770,828	8.8
4	Cervix uteri	604,127	6.9
5	Thyroid	448,915	5.1
6	Corpus uteri	417,367	4.8

World Cancer research Fund International

Classification Systems of Endometrial Cancer

- Bokhman Classification
- Clinical and epidemiological features
- WHO Classification
- Histomorphological features
- Molecular Classification
- Integrated genomic analysis

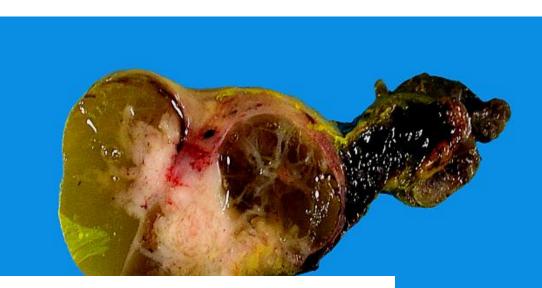
Histological type (WHO 5th Ed)

Endometrial carcinoma **Binary grading** Synchronous endometrial Endometrioid and ovarian carcinoma Serous IHC: p53, p16 and • Clear cell Her2 Undifferentiated and dedifferentiated ca

- Mixed ca +
- Carcinosarcoma

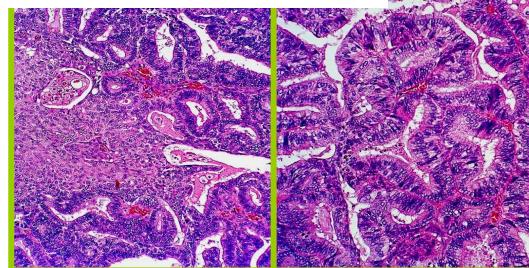
hers

- sonephric adenocarcinoma Juamous cell carcinoma NOS Mucinous carcinoma, intestinal type
- Mesonephric-like adenocarcinoma


Endometrioid Carcinoma - Grading

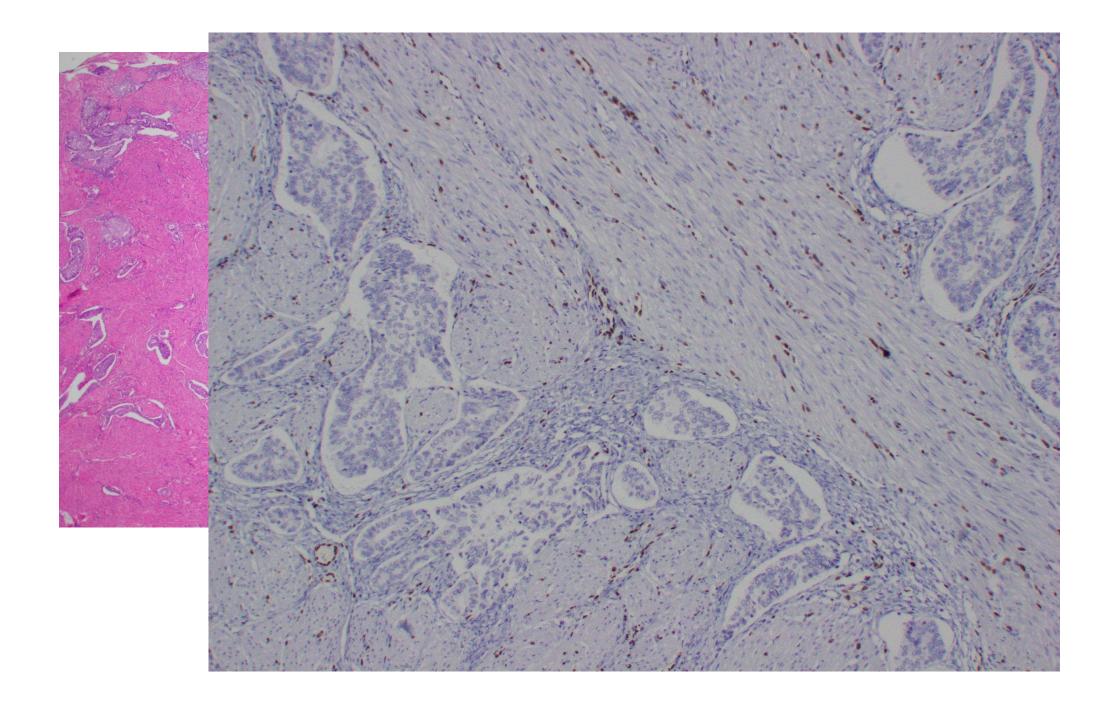
FIGO Grade	Definition	
1	≤ 5% of solid (non-squamous/morular) growth	Low grade
2	6-50% solid growth	
3	>50% solid growth	} High grade
	ded, contain prominent, often multiple, >50% of tumour → upgrade tumour by 1 grade Exception: patie to preserve	

Endometrioid Carcinoma- Grading


- Binary grade: equal/superior to 3-tiered FIGO system in terms of interobserver variability kappa score
- Presence of microacini should not be considered "glandular" for the purposes of assigning binary or FIGO grade (ISGYP recommendation)
- A tumour is considered FIGO grade 3 if the solid areas resemble poorly differentiated nonkeratinizing squamous cell carcinoma (ISGYP recommendation)

Synchronous or Metastatic Tumours?

Endometrioid Carcinoma


Synchronous endometrial and ovarian carcinoma

- Favorable outcome (akin to 2 low-stage primaries)
- Recent studies demonstrated clonal relationship → favour metastases (endometrium to ovary)
- Conservative management should be considered when:
 - Both low-grade
 - <50% myometrial invasion
 - No involvement of any other site
 - Absence of extensive LVSI

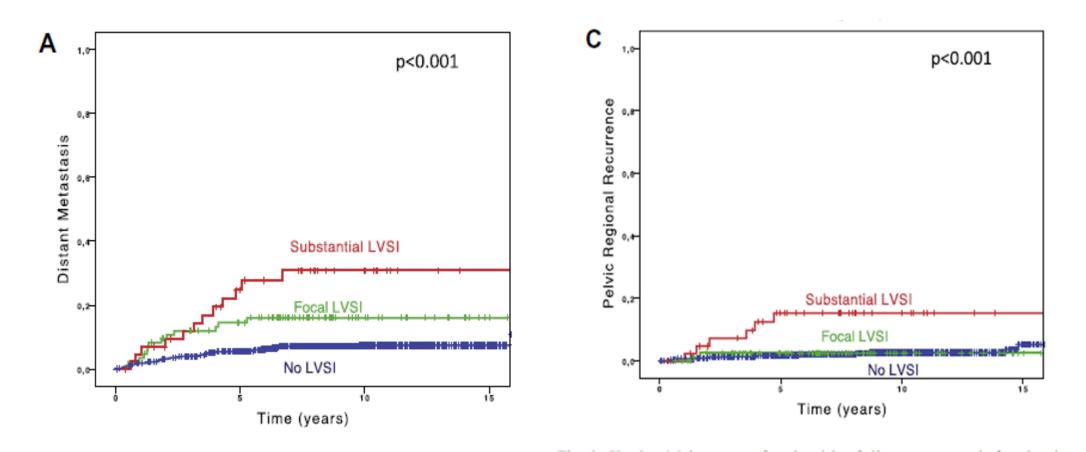
Endometrioid Carcinoma

Lymphovascular invasion

- Presence of tumour cells in a space lined by endothelial cells outside the immediate invasive border
- 5–15% of tumours
- Frequently associated with MELF pattern of invasion and MMRd
- Should be distinguished from artefactual vascular involvement
 => beware in poorly fixed tumours and those with necrosis ++

Endometrioid Carcinoma

Lymphovascular invasion


- Extensive/substantial LVSI: presence of tumour cells in ≥5 vessels
 → PROGNOSTIC SIGNIFICANCE
- Presence does not upstage the tumour

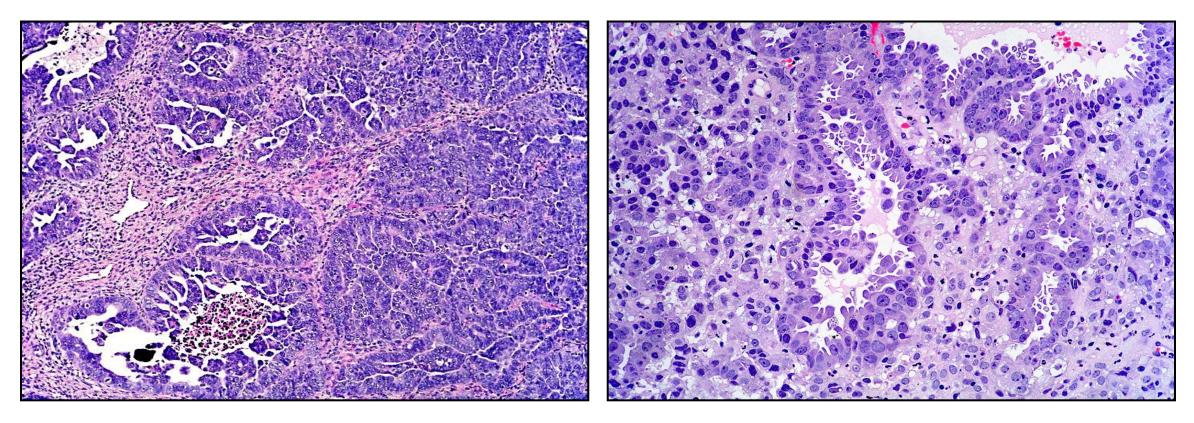
Reporting recommendation

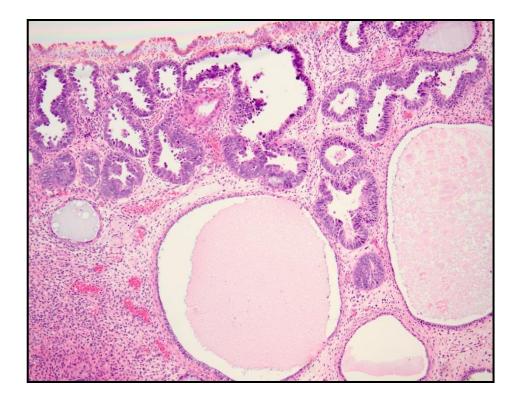
➢ Absent

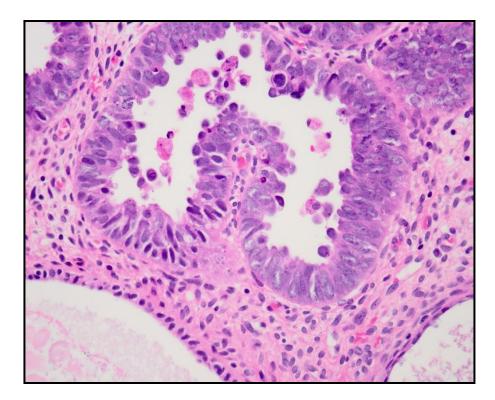
- Present, focal (1 focus)
- Present (state number of foci)
- ➢ Present, substantial (≥5 foci)

PORTEC 1 and 2: Kaplan Meier Curves for Risk of Distant Mets and Pelvic Recurrences

T. Bosse et al. Eur J Cancer 51 (2015) 1742–1750

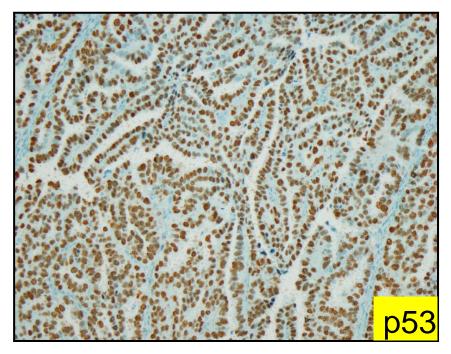

Patients with substantial LVSI (25 vessels)

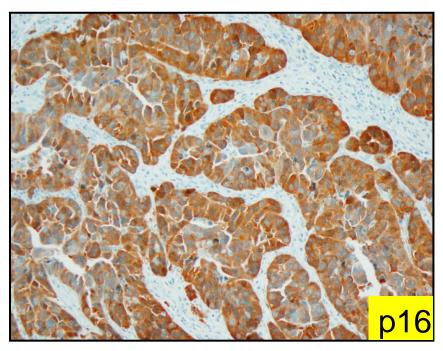

T. Bosse et al. Eur J Cancer 51 (2015) 1742–1750


Serous Carcinoma

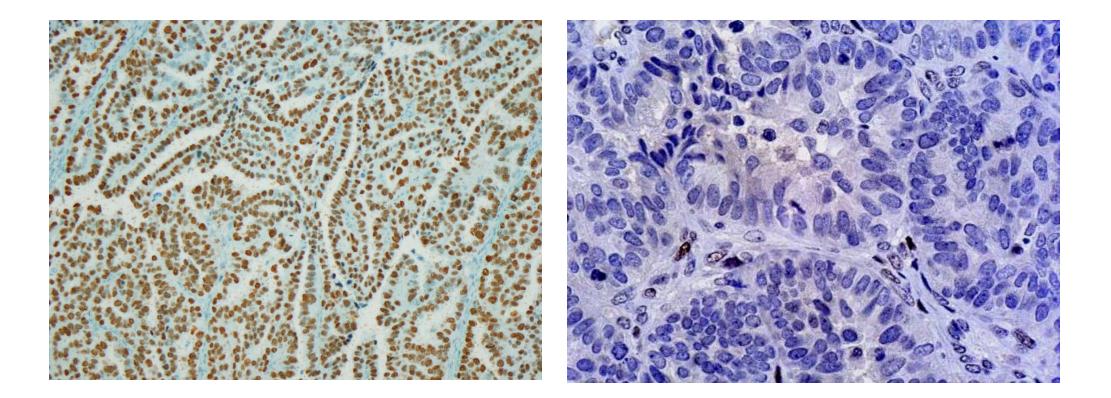
- Marked and diffuse nuclear pleomorphism
- Solid, papillary and/or glandular growth patterns

Serous Endometrial Intraepithelial Carcinoma

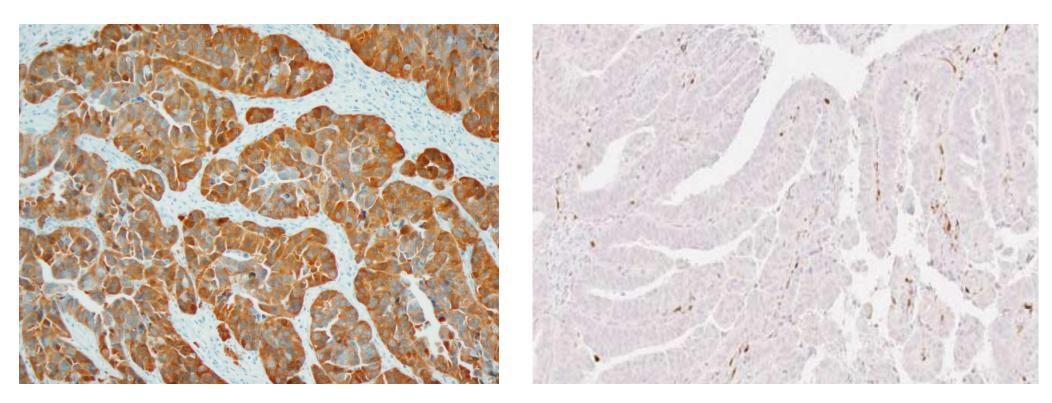



Does not behave like an 'in-situ' lesion - can be associated with metastases !

Serous Carcinoma


Immunohistochemical profile

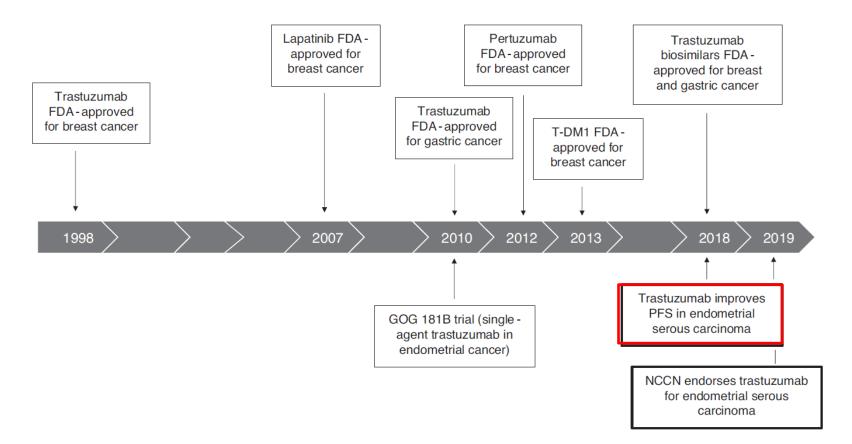
- Majority show mutation-pattern p53 staining
- diffuse expression of p16
- ➢ WT-1: focally positive in 30% of cases



Aberrant p53 expression

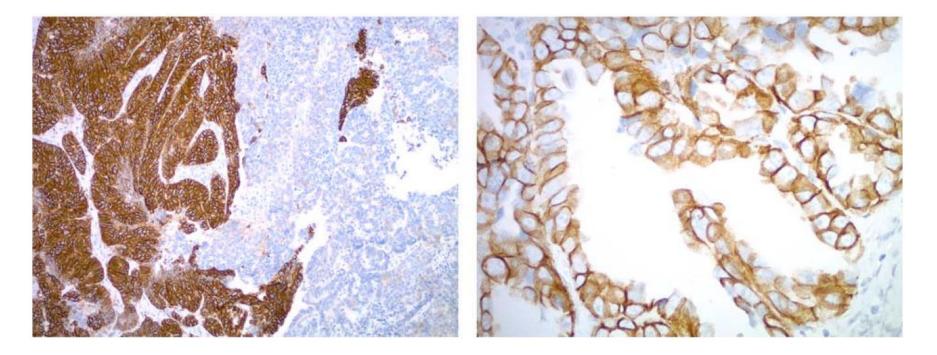
Strong and diffuse staining in >80% of tumour cells or Complete absence of staining

p16 expression in Serous Carcinoma


Strong and diffuse

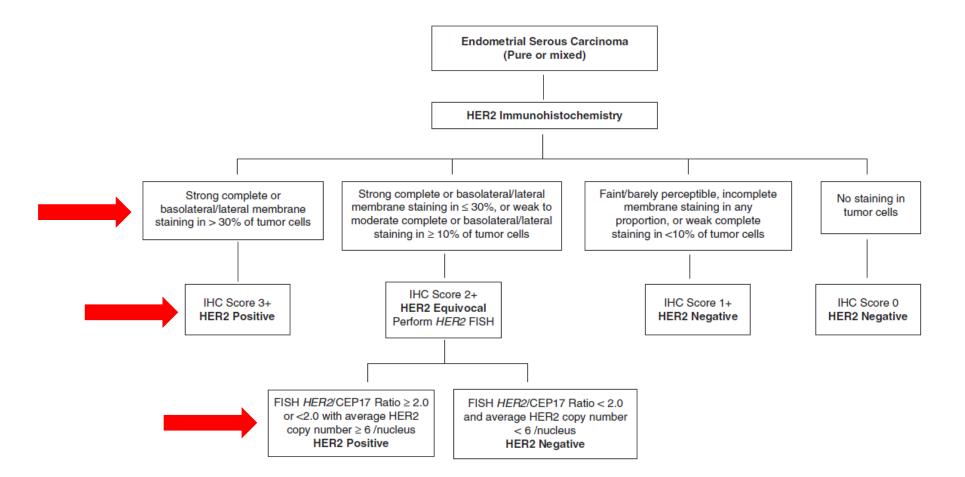
Null pattern

Matson DR et a. Int J Gynecol Pathol 2021; 41:378–388


Her2 Testing in Endometrial Serous Carcinoma

ERBB2 (HER2) overexpression and/or gene amplification is seen in > 30%

Buza N. Int J Gynecol Pathol. 40:17–23


Her2 IHC in Endometrial Serous Carcinoma

Heterogenous expression

Basolateral/lateral membranous staining

Her2 Testing in Endometrial Serous Carcinoma

Buza N. Int J Gynecol Pathol. 40:17–23

Histopathologic features and molecular genetic landscape of HER2-amplified endometrial carcinomas

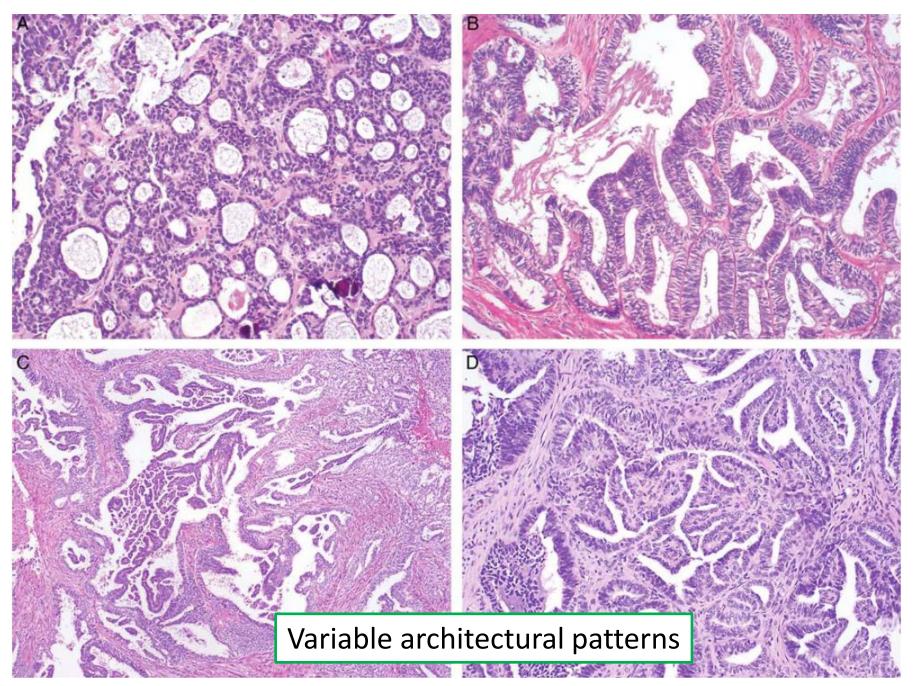
Ross D et al Modern Pathology (2022) 35:962–971

 Table 1. Frequency of HER2 amplification across histologic subtypes of endometrial carcinoma.

Tumor histologic subtype	HER2 amplification (n)	Total number of cases (n)	Frequency (%)
Serous	29	361	8.0
Endometrioid	3	1177	0.2
Clear cell	4	72	6
Carcinosarcoma	18	255	7.1
HGEC/Mixed	23	164	14
Other (undifferentiated, de-differentiated, mesonephric-like, neuroendocrine)	0	13	0

- Co-existing *TP53* mutation identified in **94%** (72/77) of HER2-amplified Ecs
- Other genetic alterations included
 - amplification of CCNE1 (22%) and ERBB3 (10%)
 - FBXW7 mutations or deletions (13%)
 - Mutations in PIK3CA (40%) and PPP2R1A (13%)

Mixed Endometrial Carcinomas


- Definition 2 or more spatially distinct tumour subtypes, at least 1 of which is <u>serous</u> carcinoma or <u>clear cell</u> carcinoma
- Most common combination endometrioid + serous
- Excludes
 - Morphologic variants of endometrioid, serous or clear cell
 - Endometrioid carcinoma with mucinous differentiation
 - Dedifferentiated endometrial carcinoma
 - Carcinosarcoma

Mixed Endometrial Carcinomas

- No minimum amount of serous or clear cell carcinoma needed
- Immunohistochemical support for 2 distinct types is desirable
- Avoid using this category for tumours with ambiguous morphology
- Report should include
 - tumour types present and their grade
 - Their respective percent composition

Mesonephric-like adenocarcinomas (MLA)

- Similar histologic and immunophenotypic features as mesonephric carcinoma
- Diff: mucosal location and lack of mesonephric remnants/hyperplasia
- Sites of occurrence: endometrium and ovary
- Uncertain histogenesis
- ?Mesonephric carcinomas
- > ?Mullerian carcinomas with mesonephric differentiation

Am J Surg Pathol. 2020 Apr;44(4):429-443

MLA-Immunoprofile

- GATA3 + (91% sensitivity, 94% specificity)
- Loss of expression in solid, spindled and undifferentiated areas of tumor
- TTF1 +
- CD10 + (apical/luminal staining)
- Calretinin +/-
- PAX8 +/-
- CK7 +

- Negative for ER/PR
- Wild type p53
- Mosaic pattern p16

	Features in Common With Mullerian Carcinoma	Features in Common With True Mesonephric Adenocarcinoma	
Pathology	Distribution within uterine corpus (predominantly endometrial- based)	Very similar morphology; absence of squamous, ciliated and mucinous differentiation; absence of adjacent endometrial hyperplasia	
Immunophenotype	Focal ER positivity	Very similar immunophenotype (classically ER and PR negative; TTF1, GATA3, CD10 positive)	
Associated findings	Endometriosis; other ovarian Mullerian lesions; lack of mesonephric remnants		
Molecular features	PIK3CA, PTEN, ARID1A mutations	KRAS and NRAS mutations	

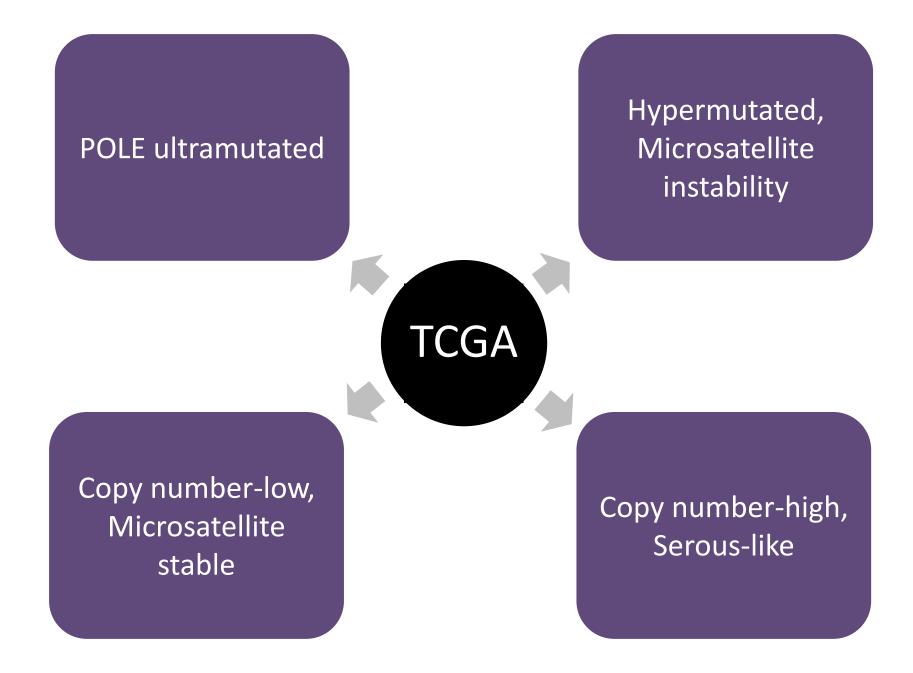
Prognosis of MLA

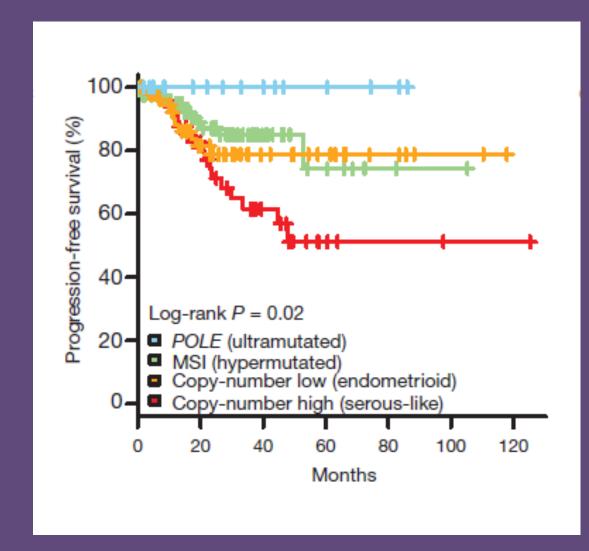
- Aggressive biological behavior
- a/w risk of recurrent disease with tendency for lung metastasis

Features a/w increased risk of metastasis

✓ large tumor size (>4 cm)

 \checkmark ill-defined tumor border

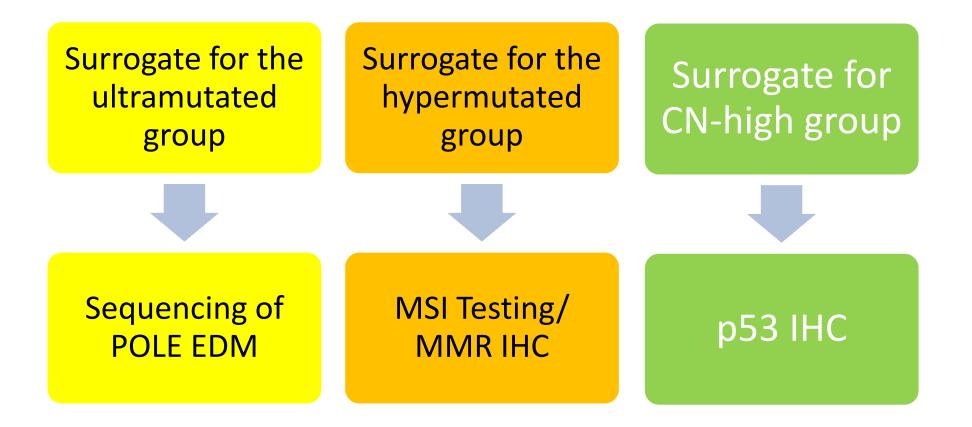

- ✓ advanced FIGO stages (III to IV),
- ✓ presence of coagulative tumor cell necrosis
- ✓ high mitotic activity (>10/10 high-power fields)


✓ presence of LVI

Mucinous carcinoma, gastric (gastrointestinal)-type

- Mucinous differentiation may be seen in endometrioid carcinoma *≠*mucinous ca
- Rare; similar to gastric type endocervical adenocarcinomas
 Presence of gastric-type morphology and/or goblet cells
 Absent/minimal expression of ER
 Expression of gastrointestinal markers
- Differentials:
 - Cervical primary
 - metastasis from GIT
- Aggressive behaviour

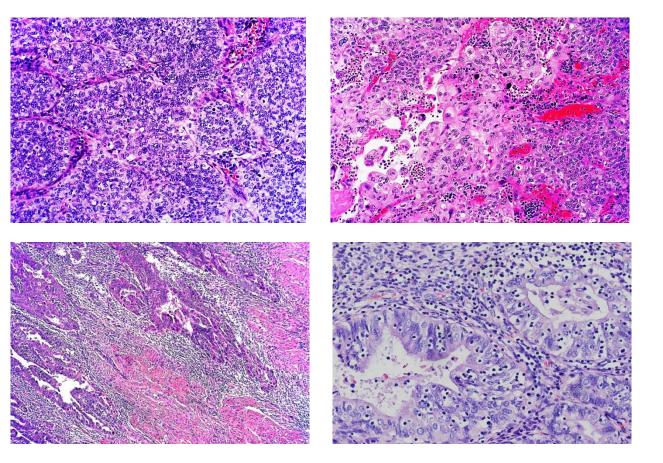
Molecular Classification of Endometrial Carcinoma


TCGA. *Nature* 2013;497(7447):67-73

Clinicopathological and Molecular Characteristics of the Molecular Subgroups

		POLE-mutantMM(i.e. POLE EDM)(i.e. M		NSMP (i.e. p53 wt)			p53–aberrant (i.e. p53 abn, p53–mutant)	
Mutational frequency	utational frequency > 100 mutations/Mb		100-10 mutations/Mb		< 10 mutations/Mb		< 10 mutations/Mb	
Somatic copy-number alterations	Very low		Low		Low		High	
Top five recurrent gene	POLE	(100%)	PTEN	(88%)	PTEN	(77%)	TP53	(92%)
mutations (%)	DMD	(100%)	РІКЗСА	(54%)	РІКЗСА	(53%)	РІКЗСА	(47%)
	CSMD1	(100%)	PIK3R1	(42%)	CTNNB1	(52%)	FBXW7	(22%)
	FAT4	(100%)	RPL22	(37%)	ARID1A	(42%)	PPP2R1A	(22%)
	PTEN	(94%)	ARID1A	(37%)	PIK3R1	(33%)	PTEN	(10%)
Associated histological features	Endometrioid		Endometrioid		Endometrioid		Serous	
	Grade 3		Grade 3		Grade 1-2		Grade 3	
	Ambiguous morphology		LVSI substantial		Squamous differentiati	on	LVSI	
	Broad front invasion		MELF-type invasion		ER/PR expression		Destructive invasion	
	TILs, peri-tumoural Lymphocytes TILs, Crohn's-like peri-tumoural reacti		oural reaction			High cytonuclear atypia Giant tumoural cells		
	Giant tumoural cells Low uterine segment involvement				Hobnailing			
							Slit-like spaces	
Associated clinical features	Lower BMI		Higher BMI		Higher BMI		Lower BMI	
	Early stage (IA/IB) Lynch syndror		Lynch syndrome				Advanced stage	
	Early onset						Late onset	
Prognosis in early stage (I–II)	Excellent		Intermediate		Excellent/intermediate/poor		Poor	
Diagnostic test	Sanger/NGS (exons 9, 13, 14	or 9–14)	MMR-IHC (MLH1, MSH2, M	ISH6, PMS2)			p53-IHC	
	Tumour mutation burden		MSI assay				NGS	
			Tumour mutation burden				SCNA	
Suggested treatment options in recur- rent/metastatic	Checkpoint inhibitors		Checkpoint inhibitors		Hormonal therapy mTO	R inhibitors	Small molecule activato	rs of p53
disease [*]							PARPi	

McAlpine J et al. J Pathol 2018; 244: 538–549


How can we molecularly classify endometrial cancers in routine clinical practice?

POLE TESTING

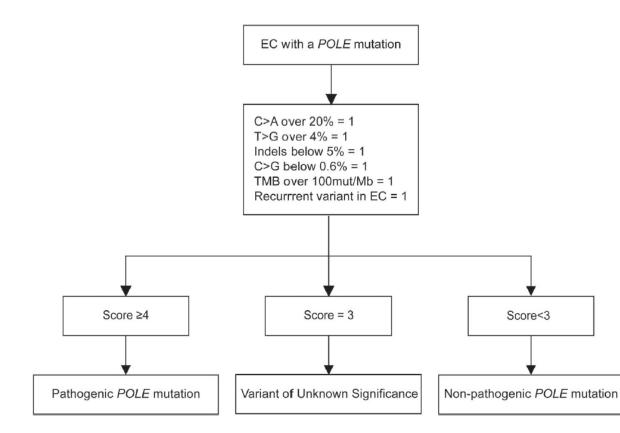
Clinicopathological Features of EC with POLE Mutation

High grade tumours

Ambiguous morphology

Peritumoral lymphocytes

Tumour infiltrating lymphocytes


Testing for POLE Mutations

POLE exonuclease domain mutations

- Single gene assays eg Sanger Sequencing
- Next generation sequencing
- Tumour mutational burden

 Majority of mutations outside the exonuclease domain are not pathogenic

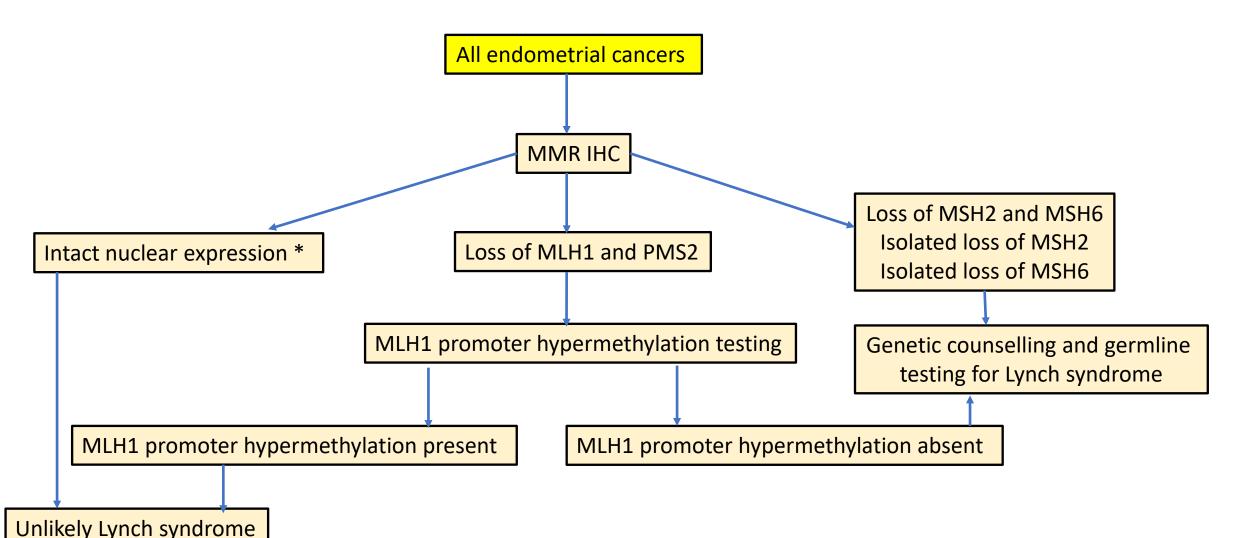
POLE Score

Pathogenic POLE EDM based on POLE-score

Protein change	Nucleotide substitution
P286R	c.857C>G
V411L	c.1231G>T/C
S297F	c.890C>T
S459F	c.1376C>T
A456P	c.1366G>C
F367S	c.1100T>C
L424I	c.1270C>A
M295R	c.884T>G
P436R	c.1307C>G
M444K	c.1331T>A
D368Y	c.1102G>T

Alicia León-Castillo et al. J Pathol 2020; 250: 323–335

MMR/MSI TESTING


MSI testing

IHC

MMR IHC

- Stain for MMR proteins: MLH1,MSH2, MSH6, PMS2
- High concordance with MSI assay (>90%)
- A simplified two-antibody (PMS2 and MSH6) approach has been proposed as a cost-effective alternative

Universal Screening Model

* Patients with suspicious clinical history \rightarrow refer for genetic counselling and germline testing

Why test for MMR/MSI in EC?

- 1. Diagnostic (MMRd/MSI is considered a marker for endometrioid-type EC)
- 2. Pre-screening (to identify patients at higher risk for Lynch syndrome)
- 3. Prognostic
- 4. Predictive (for use of immunotherapy)

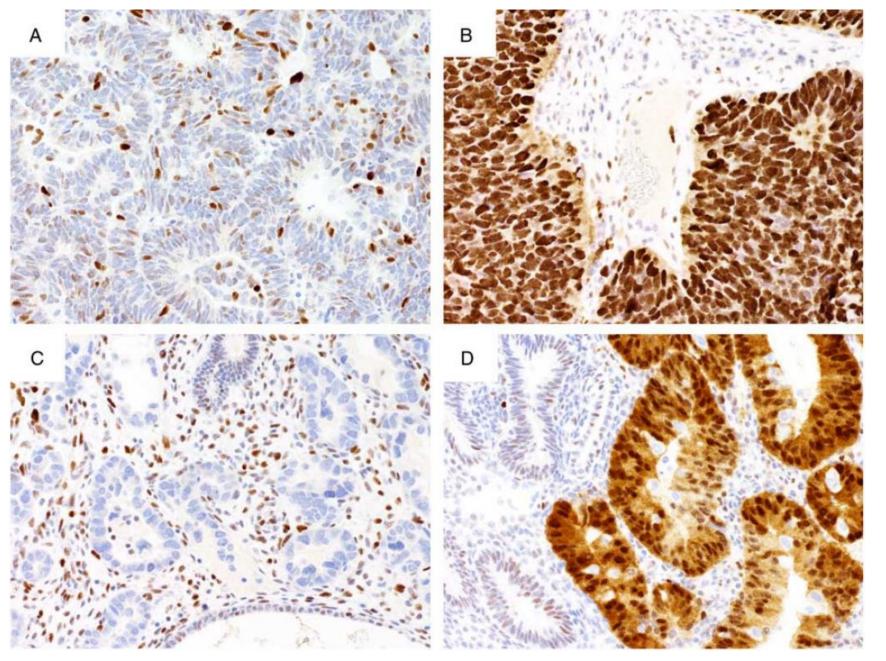
P53 TESTING

P53 IHC

4 main patterns of staining

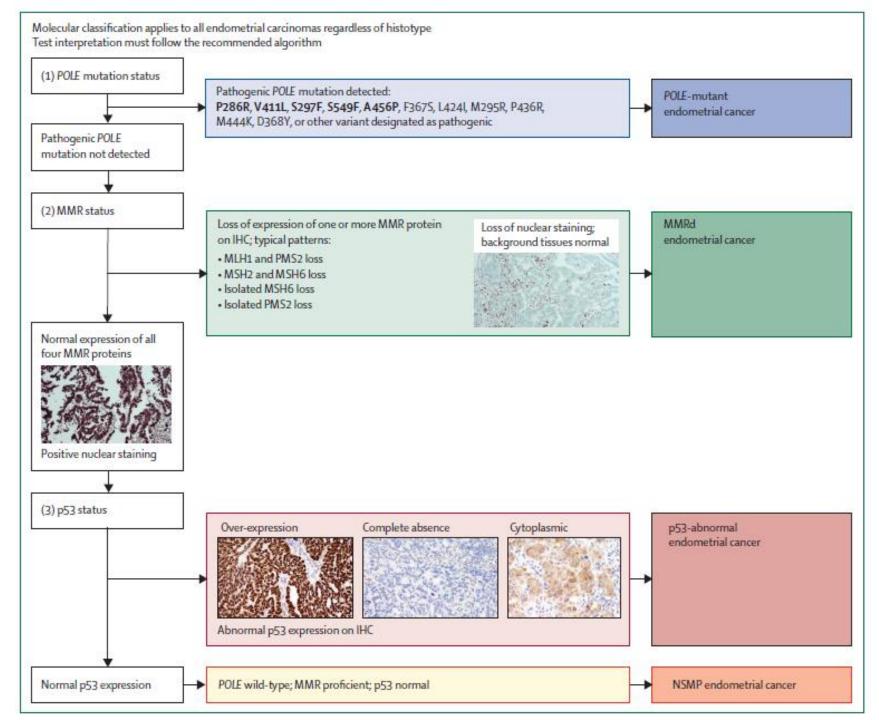
>Complete absence (null pattern)

➢Overexpression


- ≻Cytoplasmic
- ≻Wild-type

Pattern of staining should be reported as

- ≻wild-type or
- ➤abnormal/aberrant/mutation type (describe pattern)
- > do not report as positive or negative


Wild-type

Null pattern

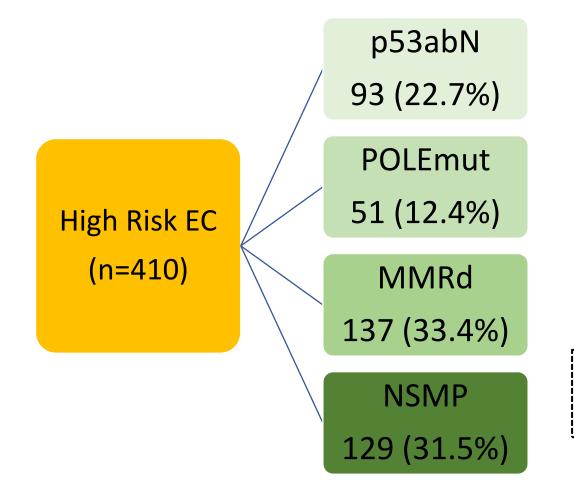
Overexpression

Cytoplasmic

Lancet 2022; 399: 1412-28

PORTEC-3

High Risk EC

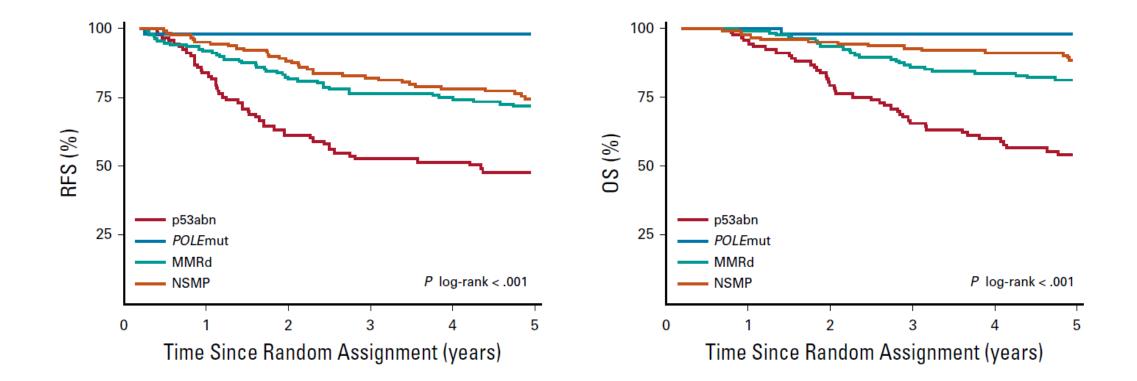

Stage IA EEC grade 3 with LVSI
Stage IB EEC grade 3
Stage II EEC
Stage III EEC
Stage I, II or III NEEC

ChemoRT (CTRT)

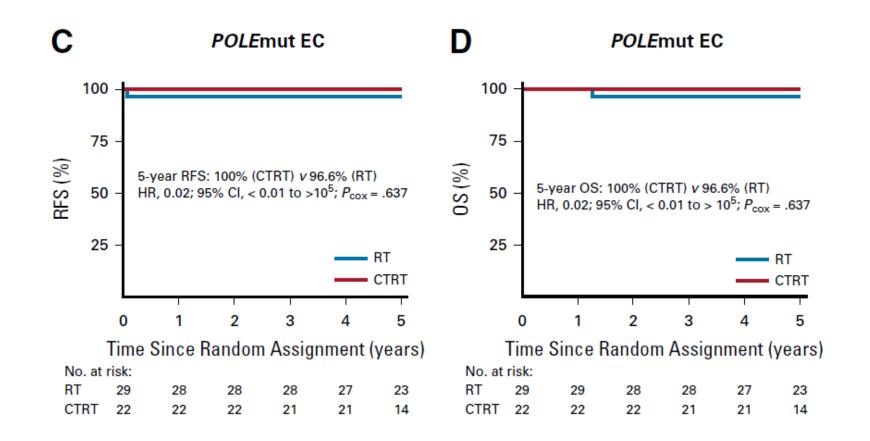
Pelvic RT(RT)

León-Castillo et al. J Clin Oncol 2020 38:29, 3388-3397

PORTEC-3



Characteristic	Total	p53abn	POLE mut	MMRd	NSMP	Р
No. of patients	410 (100)	93 (22.7)	51 (12.4)	137 (33.4)	129 (31.5)	
Age, years						< .001
Mean (range)	61.2 (26.7-80.5)	65.8 (47.3-80.5)	57.2 (42.7-72.3)	60.6 (33.5-76.5)	60.1 (26.7-78.6)	
Histotype						< .001
EEC grade 1-2	161 (39.3)	4 (4.3)	4 (7.8)	59 (43.1)	94 (72.9)	
EEC grade 3	113 (27.6)	21 (22.6)	29 (56.9)	47 (34.3)	16 (12.4)	
Serous carcinoma	65 (15.9)	46 (49.5)	6 (11.8)	7 (5.1)	6 (4.7)	
Clear-cell carcinoma	39 (9.5)	12 (12.9)	6 (11.8)	12 (8.8)	9 (7.0)	
Mixed carcinoma	19 (4.6)	6 (6.5)	3 (5.9)	7 (5.1)	3 (2.3)	
Other	13 (3.2)	4 (4.3)	3 (5.9)	5 (3.6)	1 (0.8)	
Stage						< .001
IA	54 (13.2)	23 (24.7)	12 (23.5)	13 (9.5)	6 (4.7)	
IB	73 (17.8)	14 (15.1)	20 (39.2)	26 (19.0)	13 (10.1)	
II	105 (25.6)	24 (25.8)	7 (13.7)	33 (24.1)	41 (31.8)	
IIIA	46 (11.2)	8 (8.6)	2 (3.9)	10 (7.3)	26 (20.2)	
IIIB	29 (7.1)	4 (4.3)	4 (7.8)	13 (9.5)	8 (6.2)	
IIIC	103 (25.1)	20 (21.5)	6 (11.8)	42 (30.7)	35 (27.1)	


No clear correlation between histological and molecular subtypes

León-Castillo et al. J Clin Oncol 2020 38:29, 3388-3397

Kaplan-Meier Survival Curves for 5-year recurrence free survival (RFS) and overall survival (OS)

León-Castillo et al. J Clin Oncol 2020 38:29, 3388-3397

Patients with POLEmut EC had an excellent RFS and OS in both trial arms (even in those with advanced-stage and non-endometrioid histologies)

Joint statement

ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma

Nicole Concin ⁽¹⁾, ^{1,2} Xavier Matias-Guiu, ^{3,4} Ignace Vergote, ⁵ David Cibula, ⁶ Mansoor Raza Mirza, ⁷ Simone Marnitz, ⁸ Jonathan Ledermann ⁽¹⁾, ⁹ Tjalling Bosse, ¹⁰ Cyrus Chargari, ¹¹ Anna Fagotti, ¹² Christina Fotopoulou ⁽¹⁾, ¹³ Antonio Gonzalez Martin, ¹⁴ Sigurd Lax, ^{15,16} Domenica Lorusso, ¹² Christian Marth, ¹⁷ Philippe Morice, ¹⁸ Remi A Nout, ¹⁹ Dearbhaile O'Donnell, ²⁰ Denis Querleu ⁽¹⁾, ^{12,21} Maria Rosaria Raspollini, ²² Jalid Sehouli, ²³ Alina Sturdza, ²⁴ Alexandra Taylor, ²⁵ Anneke Westermann, ²⁶ Pauline Wimberger, ²⁷ Nicoletta Colombo, ²⁸ François Planchamp, ²⁹ Carien L Creutzberg³⁰

Int J Gynecol Cancer 2021;31:12–39.

Recommendation:

- Molecular classification is encouraged in all endometrial carcinomas,
 - especially high-grade tumors

Risk group	Molecular classification unknown	Molecular classification known*†
Low	 Stage IA endometrioid + low-grade‡ + LVSI negative or focal 	 Stage I–II <i>POLEmut</i> endometrial carcinoma, no residual disease Stage IA MMRd/NSMP endometrioid carcinoma + low-grade‡ + LVSI negative or focal
ntermediate	 Stage IB endometrioid + low-grade‡ + LVSI negative or focal Stage IA endometrioid + high-grade‡ + LVSI negative or focal Stage IA non-endometrioid (serous, clear cell, undifferentiared carcinoma, carcinosarcoma, mixed) without myometrial invasion 	 Stage IB MMRd/NSMP endometrioid carcinoma + low-grade‡ + LVSI negative or focal Stage IA MMRd/NSMP endometrioid carcinoma + high-grade‡ + LVSI negative or focal Stage IA p53abn and/or non-endometrioid (serous, clear cell, undifferentiated carcinoma, carcinosarcoma, mixed) without myometrial invasion
ligh–intermediate	 Stage I endometrioid + substantial LVSI regardless of grade and depth of invasion Stage IB endometrioid high-grade‡ regardless of LVSI status Stage II 	 Stage I MMRd/NSMP endometrioid carcinoma + substantial LVSI regardless of grade and depth of invasion Stage IB MMRd/NSMP endometrioid carcinoma high-grade‡ regardless of LVSI status Stage II MMRd/NSMP endometrioid carcinoma
High	 Stage III–IVA with no residual disease Stage I–IVA non-endometrioid (serous, clear cell, undifferentiated carcinoma, carcinosarcoma, mixed) with myometrial invasion, and with no residual disease 	 Stage III–IVA MMRd/NSMP endometrioid carcinoma with no residual disease Stage I–IVA p53abn endometrial carcinoma with myometrial invasion, with no residual disease Stage I–IVA NSMP/MMRd serous, undifferentiated carcinoma, carcinosarcoma with myometrial invasion, with no residual disease
dvanced netastatic	 Stage III–IVA with residual disease Stage IVB 	 Stage III–IVA with residual disease of any molecular type Stage IVB of any molecular type

Concin N, et al. Int J Gynecol Cancer 2021;31:12–39

Multiple Classifier EC

- Uncommon; simultaneous presence of two or three molecular signatures (3% of endometrial cancers)
- Outcomes correspond to those predicted by the driver molecular subtype e.g.
 - ➤MMRd-p53abn EC behave like MMRd
 - ➢POLEmut−p53abn EC behave like POLEmut

CTNNB1 Mutations in EC

- 20-25% of tumours; mostly NSMP subtype
- CTNNB1 encodes for β-catenin
 - ➤ cell to cell adhesion
 - \succ Wnt/ β -catenin signalling pathway
- Missense mutations in exon 3 \rightarrow translocation of β -catenin to the nucleus which can be detected by IHC
- Detection
 - ✓ Sequencing (Sanger/NGS)
 - ✓ IHC (nuclear β-catenin expression)
 - Specificity (~100%)
 - Sensitivity (85-91%)

CTNNB1 Mutants – the Fifth Molecular subgroup?

- Clinicopathological features
 - usually occur in younger women
 - low grade histology
 - low rates of myometrial invasion
 - low rates of LVSI
- a/w worse outcomes with significantly increased rate of disease recurrence and lower overall survival

Future Directions

Identify better biomarkers to guide prognosis and therapy e.g. further stratification of NSMP group using other markers e.g. CTNNB1 or ARID1A mutations and L1CAM expression

More molecular biomarkers driven clinical trials e.g. PORTEC 4-a

Studies involving combination therapies and new targeted agents e.g.
PARP inhibitors in patients with p53abn tumours

